Inhibition of SypG-Induced Biofilms and Host Colonization by the Negative Regulator SypE in Vibrio fischeri

نویسندگان

  • Andrew R. Morris
  • Karen L. Visick
چکیده

Vibrio fischeri produces a specific biofilm to promote colonization of its eukaryotic host, the squid Euprymna scolopes. Formation of this biofilm is induced by the sensor kinase RscS, which functions upstream of the response regulator SypG to regulate transcription of the symbiosis polysaccharide (syp) locus. Biofilm formation is also controlled by SypE, a multi-domain response regulator that consists of a central regulatory receiver (REC) domain flanked by an N-terminal serine kinase domain and a C-terminal serine phosphatase domain. SypE permits biofilm formation under rscS overexpression conditions, but inhibits biofilms induced by overexpression of sypG. We previously investigated the function of SypE in controlling biofilm formation induced by RscS. Here, we examined the molecular mechanism by which SypE naturally inhibits SypG-induced biofilms. We found that SypE's N-terminal kinase domain was both required and sufficient to inhibit SypG-induced biofilms. This effect did not occur at the level of syp transcription. Instead, under sypG-overexpressing conditions, SypE inhibited biofilms by promoting the phosphorylation of another syp regulator, SypA, a putative anti-sigma factor antagonist. Inhibition by SypE of SypG-induced biofilm formation could be overcome by the expression of a non-phosphorylatable SypA mutant, indicating that SypE functions primarily if not exclusively to control SypA activity via phosphorylation. Finally, the presence of SypE was detrimental to colonization under sypG-overexpressing conditions, as cells deleted for sypE outcompeted wild-type cells for colonization when both strains overexpressed sypG. These results provide further evidence that biofilm formation is critical to symbiotic colonization, and support a model in which SypE naturally functions to restrict biofilm formation, and thus host colonization, to the appropriate environmental conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inactivation of a novel response regulator is necessary for biofilm formation and host colonization by Vibrio fischeri.

The marine bacterium Vibrio fischeri uses a biofilm to promote colonization of its eukaryotic host Euprymna scolopes. This biofilm depends on the symbiosis polysaccharide (syp) locus, which is transcriptionally regulated by the RscS-SypG two-component regulatory system. An additional response regulator (RR), SypE, exerts both positive and negative control over biofilm formation. SypE is a novel...

متن کامل

The putative hybrid sensor kinase SypF coordinates biofilm formation in Vibrio fischeri by acting upstream of two response regulators, SypG and VpsR.

Colonization of the Hawaiian squid Euprymna scolopes by the marine bacterium Vibrio fischeri requires the symbiosis polysaccharide (syp) gene cluster, which contributes to symbiotic initiation by promoting biofilm formation on the surface of the symbiotic organ. We previously described roles for the syp-encoded response regulator SypG and an unlinked gene encoding the sensor kinase RscS in cont...

متن کامل

An intricate network of regulators controls biofilm formation and colonization by Vibrio fischeri.

The initial encounter between a microbe and its host can dictate the success of the interaction, be it symbiosis or pathogenesis. This is the case, for example, in the symbiosis between the bacterium Vibrio fischeri and the squid Euprymna scolopes, which proceeds via a biofilm-like bacterial aggregation, followed by entry and growth. A key regulator, the sensor kinase RscS, is critical for symb...

متن کامل

RscS functions upstream of SypG to control the syp locus and biofilm formation in Vibrio fischeri.

Two-component signal transduction systems, composed of sensor kinase (SK) and response regulator (RR) proteins, allow bacterial cells to adapt to changes such as environmental flux or the presence of a host. RscS is an SK required for Vibrio fischeri to initiate a symbiotic partnership with the Hawaiian squid Euprymna scolopes, likely due to its role in controlling the symbiosis polysaccharide ...

متن کامل

The response regulator SypE controls biofilm formation and colonization through phosphorylation of the syp-encoded regulator SypA in Vibrio fischeri.

Bacteria utilize multiple regulatory systems to modulate gene expression in response to environmental changes, including two-component signalling systems and partner-switching networks. We recently identified a novel regulatory protein, SypE, that combines features of both signalling systems. SypE contains a central response regulator receiver domain flanked by putative kinase and phosphatase e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013