Growing a carbon nanotube atom by atom: "and yet it does turn".

نویسندگان

  • Mickaël Marchand
  • Catherine Journet
  • Dominique Guillot
  • Jean-Michel Benoit
  • Boris I Yakobson
  • Stephen T Purcell
چکیده

We use field emission microscopy (FEM) to observe directly the growths of individual carbon nanotubes (CNTs) from the nucleation stage and discover that the CNTs often rotate axially during growth, thus supporting a recently proposed "screw-dislocation-like" (SDL) model. One particularly revealing case is emphasized here in which the CNT turned approximately 180 times during its 11 min growth. Even more remarkable is the frame-by-frame analysis of the video which shows that the rotation proceeds by discrete steps with about approximately 24 per rotation, half the number of atoms on the circumferences of common single wall carbon nanotubes (SWNTs). The conclusion is that we directly observed the SDL growth of a SWNT one carbon dimer at a time. This observation should aid researchers to precisely understand and control the growth of SWNTs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ab initio Calculations SWNTs and Investigation of Interaction Atoms of Oxygen with that by Computational Calculations

In this work, theoretical investigations on carbon nanotube with oxygen atom have been carried out by firstprinciplescalculations and density functional theory and hartree fock theory in 3-216 and 6-316 basis sets. Theinteraction energy of the oxygen atom to a CNT is calculated. The effects of this substitutions have beeninvestigated on the during transplantation (10,0) single-walled carbon nan...

متن کامل

Effects of carbon nanotubes on properties of the fluorouracil anticancer drug: DFT studies of a CNT-fluorouracil compound

Density functional theory (DFT) calculations were performed to investigate the effects of a carbon nanotube (CNT) on the properties of the fluorouracil (F-Uracil) anticancer drug. To achieve the purpose, a molecular model including both of F-Uracil and CNT molecules was created to represent the CNT@F-Uracil compound. The optimized parameters indicated that the new compound could show new proper...

متن کامل

Effects of carbon nanotubes on properties of the fluorouracil anticancer drug: DFT studies of a CNT-fluorouracil compound

Density functional theory (DFT) calculations were performed to investigate the effects of a carbon nanotube (CNT) on the properties of the fluorouracil (F-Uracil) anticancer drug. To achieve the purpose, a molecular model including both of F-Uracil and CNT molecules was created to represent the CNT@F-Uracil compound. The optimized parameters indicated that the new compound could show new proper...

متن کامل

DFT Study of N-hydroxyurea Adsorption Behavior onto Pristine and Iron-doped Single-walled Carbon Nanotube

The interactions between N-hydroxyurea (NHU) as anticancer drug and SWCNTs (pure and Fe-doped) were investigated with density functional theory. In this study, large long-range corrected CAM-B3LYP and B3LYP were employed to investigate the stability of the different NHU-CNT and NHU/Fe-CNT complexes in the gas phase and solution (water). The presence of an iron atom would create suitable space o...

متن کامل

The Unravelling of Open-Ended Single Walled Carbon Nanotubes Using Molecular Dynamics Simulations

The unravelling of (10, 10) and (18, 0) single-walled carbon nanotubes (SWCNTs) is simulated using molecular dynamics simulations at different temperatures. Two different schemes are proposed to simulate the unravelling; completely restraining the last atom in the chain and only restraining it in the axial direction. The forces on the terminal atom in the unravelled chain in the axial and radia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 9 8  شماره 

صفحات  -

تاریخ انتشار 2009