Accelerated Adaptive Integration Method
نویسندگان
چکیده
Conformational changes that occur upon ligand binding may be too slow to observe on the time scales routinely accessible using molecular dynamics simulations. The adaptive integration method (AIM) leverages the notion that when a ligand is either fully coupled or decoupled, according to λ, barrier heights may change, making some conformational transitions more accessible at certain λ values. AIM adaptively changes the value of λ in a single simulation so that conformations sampled at one value of λ seed the conformational space sampled at another λ value. Adapting the value of λ throughout a simulation, however, does not resolve issues in sampling when barriers remain high regardless of the λ value. In this work, we introduce a new method, called Accelerated AIM (AcclAIM), in which the potential energy function is flattened at intermediate values of λ, promoting the exploration of conformational space as the ligand is decoupled from its receptor. We show, with both a simple model system (Bromocyclohexane) and the more complex biomolecule Thrombin, that AcclAIM is a promising approach to overcome high barriers in the calculation of free energies, without the need for any statistical reweighting or additional processors.
منابع مشابه
Adaptive Information Analysis in Higher Education Institutes
Information integration plays an important role in academic environments since it provides a comprehensive view of education data and enables mangers to analyze and evaluate the effectiveness of education processes. However, the problem in the traditional information integration is the lack of personalization due to weak information resource or unavailability of analysis functionality. In this ...
متن کاملAdaptive Information Analysis in Higher Education Institutes
Information integration plays an important role in academic environments since it provides a comprehensive view of education data and enables mangers to analyze and evaluate the effectiveness of education processes. However, the problem in the traditional information integration is the lack of personalization due to weak information resource or unavailability of analysis functionality. In this ...
متن کاملEfficient Heuristic Adaptive Quadrature on GPUs: Design and Evaluation
Numerical integration is a common sub-problem in many applications. It can be solved easily in CPU-based applications using adaptive quadrature such as the adaptive Simpson’s rule. These algorithms rely, however, on error estimation yielding a significant computational overhead. In addition, they require recursive function evaluations, which are not well suited for parallel computation on graph...
متن کاملAn adaptive accelerated first-order method for convex optimization
In this paper, we present a new accelerated variant of Nesterov’s method for solving a class of convex optimization problems, in which certain acceleration parameters are adaptively (and aggressively) chosen so as to: preserve the theoretical iteration-complexity of the original method, and; substantially improve its practical performance in comparison to the other existing variants. Computatio...
متن کاملDirection Choice for Accelerated Convergence in Hit-and-Run Sampling
Hit-and-Run algorithms are Monte Carlo procedures for generating points that are asymptotically distributed according to general absolutely continuous target distributions G over open bounded regions S. Applications include nonredundant constraint identification, global optimization, and Monte Carlo integration. These algorithms are reversible random walks which commonly apply uniformly distrib...
متن کامل