A Multiobjective Cumulant Control Problem
نویسندگان
چکیده
The H2/H∞ control problem is well known in the control community. It mixes the results of two powerful control techniques; to balance two objectives: minimizing the H2 norm of the system, while constraining the system’s H∞ norm. In the presence of random noise, this is akin to solving a Nash game with the players’ objectives to minimize the mean of their costs. In this chapter, recent trends in minimizing further cumulants will be analyzed, in particular one in which wishes to minimize the variance and other cumulants of a cost, while constraining the system’s H∞ norm. This problem formulation will begin for a class of nonlinear systems with nonquadratic costs. Sufficient conditions for a Nash equilibrium for a two player game in which the control wishes to minimize the variance of its costs and the disturbance wishes to minimize the mean of its cost are found. The case of linear systems and quadratic costs is applied and equilibrium solutions are determined. Further cumulants are also examined. The results of the control formulation are applied to a problem in structural control, namely, the third generation structural benchmark for tall buildings subject to high winds.
منابع مشابه
A General Scalar-Valued Gap Function for Nonsmooth Multiobjective Semi-Infinite Programming
For a nonsmooth multiobjective mathematical programming problem governed by infinitely many constraints, we define a new gap function that generalizes the definitions of this concept in other articles. Then, we characterize the efficient, weakly efficient, and properly efficient solutions of the problem utilizing this new gap function. Our results are based on $(Phi,rho)-$invexity,...
متن کاملExistence of Solutions of a Riccati Differential System from a General Cumulant Control Problem
We study a system of infinitely many Riccati equations that arise from a cumulant control problem, which is a generalization of regulator problems, risk-sensitive controls, minimal cost variance controls, and k-cumulant controls. We obtain estimates for the existence intervals of solutions of the system. In particular, new existence conditions are derived for solutions on the horizon of the cum...
متن کاملLinear Cumulant Control and its Relationship to Risk-Sensitive Control
Matrix differential equation descriptions of the cumulants of an integral quadratic cost associated with a linear system with white-noise input were derived in the mid-70s using generalized Karhunen-Loeve expansion techniques. Here, these same descriptions are derived directly from the cumulant generating function of the cost. A generalization of the k-cumulant control problem class introduced ...
متن کاملDuality for the class of a multiobjective problem with support functions under $K$-$G_f$-invexity assumptions
In this article, we formulate two dual models Wolfe and Mond-Weir related to symmetric nondifferentiable multiobjective programming problems. Furthermore, weak, strong and converse duality results are established under $K$-$G_f$-invexity assumptions. Nontrivial examples have also been depicted to illustrate the theorems obtained in the paper. Results established in this paper unify...
متن کاملMultiobjective security game with fuzzy payoffs
A multiobjective security game problem with fuzzy payoffs is studied in this paper. The problem is formulated as a bilevel programming problem with fuzzy coefficients. Using the idea of nearest interval approximation of fuzzy numbers, the problem is transformed into a bilevel programming problem with interval coefficients. The Karush-Kuhn-Tucker conditions is applied then to reduce the problem ...
متن کاملOptimality and Duality for an Efficient Solution of Multiobjective Nonlinear Fractional Programming Problem Involving Semilocally Convex Functions
In this paper, the problem under consideration is multiobjective non-linear fractional programming problem involving semilocally convex and related functions. We have discussed the interrelation between the solution sets involving properly efficient solutions of multiobjective fractional programming and corresponding scalar fractional programming problem. Necessary and sufficient optimality...
متن کامل