Differential expression of I(A) channel subunits Kv4.2 and Kv4.3 in mouse visual cortical neurons and synapses.
نویسندگان
چکیده
In cortical neurons, pore-forming alpha-subunits of the Kv4 subfamily underlie the fast transient outward K+ current (I(A)). Considerable evidence has accumulated demonstrating specific roles for I(A) channels in the generation of individual action potentials and in the regulation of repetitive firing. Although I(A) channels are thought to play a role in synaptic processing, little is known about the cell type- and synapse-specific distribution of these channels in cortical circuits. Here, we used immunolabeling with specific antibodies against Kv4.2 and Kv4.3, in combination with GABA immunogold staining, to determine the cellular, subcellular, and synaptic localization of Kv4 channels in the primary visual cortex of mice, in which subsets of pyramidal cells express yellow fluorescent protein. The results show that both Kv4.2 and Kv4.3 are concentrated in layer 1, the bottom of layer 2/3, and in layers 4 and 5/6. In all layers, clusters of Kv4.2 and Kv4.3 immunoreactivity are evident in the membranes of the somata, dendrites, and spines of pyramidal cells and GABAergic interneurons. Electron microscopic analyses revealed that Kv4.2 and Kv4.3 clusters in pyramidal cells and interneurons are excluded from putative excitatory synapses, whereas postsynaptic membranes at GABAergic synapses often contain Kv4.2 and Kv4.3. The presence of Kv4 channels at GABAergic synapses would be expected to weaken inhibition during dendritic depolarization by backpropagating action potentials. The extrasynaptic localization of Kv4 channels near excitatory synapses, in contrast, should stabilize synaptic excitation during dendritic depolarization. Thus, the synapse-specific distribution of Kv4 channels functions to optimize dendritic excitation and the association between presynaptic and postsynaptic activity.
منابع مشابه
Molecular Dissection of IA Channels in Cortical Pyramidal Neurons
The rapidly activating and inactivating voltage-gated K (Kv) current, IA, is broadly expressed in neurons and is a key regulator of action potential repolarization, repetitive firing, back propagation (into dendrites) of action potentials, and responses to synaptic inputs. Interestingly, results from previous studies on a number of neuronal cell types, including hippocampal, cortical and spinal...
متن کاملRole of heteromultimers in the generation of myocardial transient outward K+ currents.
Previous studies have demonstrated a role for Kv4 alpha subunits in the generation of the fast transient outward K+ current, I(to,f), in the mammalian myocardium. The experiments here were undertaken to explore the role of homomeric/heteromeric assembly of Kv4.2 and Kv4.3 and of the Kv channel accessory subunit, KChIP2, in the generation of mouse ventricular I(to,f). Western blots reveal that t...
متن کاملTargeted deletion of Kv4.2 eliminates I(to,f) and results in electrical and molecular remodeling, with no evidence of ventricular hypertrophy or myocardial dysfunction.
Previous studies have demonstrated a role for voltage-gated K+ (Kv) channel alpha subunits of the Kv4 subfamily in the generation of rapidly inactivating/recovering cardiac transient outward K+ current, I(to,f), channels. Biochemical studies suggest that mouse ventricular I(to,f) channels reflect the heteromeric assembly of Kv4.2 and Kv4.3 with the accessory subunits, KChIP2 and Kvbeta1, and th...
متن کاملUnanticipated region- and cell-specific downregulation of individual KChIP auxiliary subunit isotypes in Kv4.2 knock-out mouse brain.
Kv4 family voltage-gated potassium channel alpha subunits and Kv channel-interacting protein (KChIP) and dipeptidyl aminopeptidase-like protein subunits comprise somatodendritic A-type channels in mammalian neurons. Recently, a mouse was generated with a targeted deletion of Kv4.2, a Kv4 alpha subunit expressed in many but not all mammalian brain neurons. Kv4.2-/- mice are grossly indistinguish...
متن کاملInterdependent roles for accessory KChIP2, KChIP3, and KChIP4 subunits in the generation of Kv4-encoded IA channels in cortical pyramidal neurons.
The rapidly activating and inactivating voltage-dependent outward K(+) (Kv) current, I(A), is widely expressed in central and peripheral neurons. I(A) has long been recognized to play important roles in determining neuronal firing properties and regulating neuronal excitability. Previous work demonstrated that Kv4.2 and Kv4.3 α-subunits are the primary determinants of I(A) in mouse cortical pyr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 26 47 شماره
صفحات -
تاریخ انتشار 2006