Multiset Permutations in Lexicographic Order

نویسنده

  • Ting Kuo
چکیده

In a previous work [12], we proposed a method for generating permutations in lexicographic order. In this study, we extend it to generate multiset permutations. A multiset is a collection of items that are not necessarily distinct. The guideline of the extension is to skip, as soon as possible, those partially-formed permutations that are less than or equal to the latest generated eligible permutation. Multiset permutation can be applied in combinations generation, since a combination of q items out of n items is a special case of multiset permutations that contain q 1s and (n-q) 0s. Keywords—multiset permutation, lexicographic order, ranking, unranking, ordinal representation

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A SAT-based Implementation for RPO Termination

This paper introduces a propositional encoding of the recursive path order (RPO) on terms which is a combination of a multiset path order and a lexicographic path order which considers permutations of the arguments in the lexicographic comparison. The proposed encoding allows us to use SAT solvers in order to determine whether a given term rewrite system is RPO terminating. An implementation is...

متن کامل

A New Method for Generating Permutations in Lexicographic Order

First, an ordinal representation scheme for permutations is defined. Next, an “unranking” algorithm that can generate a permutation of n items according to its ordinal representation is designed. By using this algorithm, all permutations can be systematically generated in lexicographic order. Finally, a “ranking” algorithm that can convert a permutation to its ordinal representation is designed...

متن کامل

Multi-level Loop-less Algorithm for Multi-set Permutations

We present an algorithm that generates multiset permutations in O(1) time for each permutation, that is, by a loop-less algorithm with O(n) extra memory requirement. There already exist several such algorithms that generate multiset permutations in various orders. For multiset permutations, we combine two loop-less algorithms that are designed in the same principle of tree traversal. Our order ...

متن کامل

Loopless generation of multiset permutations using a constant number of variables by prefix shifts

This paper answers the following mathematical question: Can multiset permutations be ordered so that each permutation is a prefix shift of the previous permutation? Previously, the answer was known for the permutations of any set, and the permutations of any multiset whose corresponding set contains only two elements. This paper also answers the following algorithmic question: Can multiset perm...

متن کامل

Efficient Algorithms to Rank and Unrank Permutations in Lexicographic Order

We present uniform and non-uniform algorithms to rank and unrank permutations in lexicographic order. The uniform algorithms run in O(n log n) time and outperform Knuth’s ranking algorithm in all the experiments, and also the lineartime non-lexicographic algorithm of Myrvold-Ruskey for permutations up to size 128. The non-uniform algorithms generalize Korf-Schultze’s linear time algorithm yet r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014