Applications of knitted mesh fabrication techniques to scaffolds for tissue engineering and regenerative medicine.

نویسندگان

  • Xingang Wang
  • Chunmao Han
  • Xinlei Hu
  • Huafeng Sun
  • Chuangang You
  • Changyou Gao
  • Yang Haiyang
چکیده

Knitting is an ancient and yet, a fresh technique. It has a history of no less than 1,000 years. The development of tissue engineering and regenerative medicine provides a new role for knitting. Several meshes knitted from synthetic or biological materials have been designed and applied, either alone, to strengthen materials for the patching of soft tissues, or in combination with other kinds of biomaterials, such as collagen and fibroin, to repair or replace damaged tissues/organs. In the latter case, studies have demonstrated that knitted mesh scaffolds (KMSs) possess excellent mechanical properties and can promote more effective tissue repair, ligament/tendon/cartilage regeneration, pipe-like-organ reconstruction, etc. In the process of tissue regeneration induced by scaffolds, an important synergic relationship emerges between the three-dimensional microstructure and the mechanical properties of scaffolds. This paper presents a comprehensive overview of the status and future prospects of knitted meshes and its KMSs for tissue engineering and regenerative medicine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Review on Commonly Used Scaffolds in Tissue Engineering for Bone Tissue Regeneration

Introduction: Bone is one of the tissues that have a true potential for regeneration. However, sometimes the bone defects are so outsized that there is no chance of bone self-repair and restoration or the damage is such that it is not possible to repair with medical or surgical interventions. In these situations, bone grafts are the treatment of choice, but due to several obstacles, including l...

متن کامل

Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering.

Microfluidic technologies are emerging as an enabling tool for various applications in tissue engineering and cell biology. One emerging use of microfluidic systems is the generation of shape-controlled hydrogels (i.e., microfibers, microparticles, and hydrogel building blocks) for various biological applications. Furthermore, the microfluidic fabrication of cell-laden hydrogels is of great ben...

متن کامل

Tissue Engineered Scaffolds in Regenerative Medicine

Stem cells are self-renewing cells that can be differentiated into other cell types. Conventional in vitro models for studying stem cells differentiation are usually preformed in two-dimensional (2D) cultures. The design of three-dimensional (3D) in vitro models which ideally are supposed to mimic the in vivo stem cells microenvironment is potentially useful for inducing stem cell derived tissu...

متن کامل

Recent Advances in Biomaterials for 3D Printing and Tissue Engineering

Three-dimensional printing has significant potential as a fabrication method in creating scaffolds for tissue engineering. The applications of 3D printing in the field of regenerative medicine and tissue engineering are limited by the variety of biomaterials that can be used in this technology. Many researchers have developed novel biomaterials and compositions to enable their use in 3D printin...

متن کامل

Hierarchical starch-based fibrous scaffold for bone tissue engineering applications.

Fibrous structures mimicking the morphology of the natural extracellular matrix are considered promising scaffolds for tissue engineering. This work aims to develop a novel hierarchical starch-based scaffold. Such scaffolds were obtained by a combination of starch-polycaprolactone micro- and polycaprolactone nano-motifs, respectively produced by rapid prototyping (RP) and electrospinning techni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the mechanical behavior of biomedical materials

دوره 4 7  شماره 

صفحات  -

تاریخ انتشار 2011