Membraneless microseparation by asymmetry in curvilinear laminar flows.

نویسندگان

  • Jeonggi Seo
  • Meng H Lean
  • Ashutosh Kole
چکیده

Membraneless microseparation by asymmetric inertial migration is studied in curvilinear laminar flows and evidence of the microseparation is presented. Along a curvilinear laminar flow, transverse particle migration involves competition between three shear-flow effects; the tubular pinch effect, centrifugal force, and Dean's vortex. Equilibrating control of migration allows for particle separation to different outlets. No filter-media or external force is necessary for the microseparation utilizing only shear-flow characteristics. A double-spiral design effectively controls the migration to optimize microseparation. The concentration ratio of 10 microm beads from the two different outlets was 660 times at 92 mm/s of flow velocity. This new technology has great potential for high-throughput and low cost in bio-agent and particulate separation at both macro and micro scales.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Solution of Laminar Incompressible Flow Equation with Free Surfaces in Curvilinear Coordinates

In this paper a novel numerical approach is presented for solving the transient incompressible fluid flow problems with free surfaces in generalized two-dimensional curvilinear coordinate systems. Solution algorithm is a combination of implicit real-time steps and explicit pseudo-time steps. Governing fluid flow equations are discretized using a collocated finite-volume mesh. Convective terms a...

متن کامل

The Solution of Laminar Incompressible Flow Equation with Free Surfaces in Curvilinear Coordinates

In this paper a novel numerical approach is presented for solving the transient incompressible fluid flow problems with free surfaces in generalized two-dimensional curvilinear coordinate systems. Solution algorithm is a combination of implicit real-time steps and explicit pseudo-time steps. Governing fluid flow equations are discretized using a collocated finite-volume mesh. Convective terms a...

متن کامل

Mixing with herringbone-inspired microstructures: overcoming the diffusion limit in co-laminar microfluidic devices.

Enhancing mixing is of uttermost importance in many laminar microfluidic devices, aiming at overcoming the severe performance limitation of species transport by diffusion alone. Here we focus on the significant category of microscale co-laminar flows encountered in membraneless redox flow cells for power delivery. The grand challenge is to achieve simultaneously convective mixing within each in...

متن کامل

Membraneless vanadium redox fuel cell using laminar flow.

This paper describes the design and characterization of a small, membraneless redox fuel cell. The smallest channel dimensions of the cell were 2 mm x 50 mum or x 200 mum; the cell was fabricated in poly(dimethylsiloxane) using soft lithography. This all-vanadium fuel cell took advantage of laminar flow to obviate the need for a membrane to separate the solutions of oxidizing and reducing compo...

متن کامل

Fine Grid Numerical Solutions of Triangular Cavity Flow

Numerical solutions of 2-D steady incompressible flow inside a triangular cavity are presented. For the purpose of comparing our results with several different triangular cavity studies with different triangle geometries, a general triangle mapped onto a computational domain is considered. The Navier-Stokes equations in general curvilinear coordinates in streamfunction and vorticity formulation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of chromatography. A

دوره 1162 2  شماره 

صفحات  -

تاریخ انتشار 2007