[Development of vaccine adjuvants using polymeric nanoparticles and their potential applications for anti-HIV vaccine].
نویسندگان
چکیده
The development of a prophylactic/therapeutic HIV-1 vaccine based on recombinant proteins is needed for the control of the worldwide AIDS epidemic. Subunit protein and peptide vaccines are generally very safe, with well-defined components. However, these antigens are often poorly immunogenic, and thus require the use of adjuvants to induce adequate immunity. Particulate adjuvants (e.g. micro/nanoparticles, emulsions, ISCOMS, liposomes, virosomes, and virus-like particles) have been widely investigated as HIV-1 vaccine delivery systems. Antigen uptake by antigen-presenting cells (APC) is enhanced by the association of the antigens with polymeric micro/nanoparticles. The adjuvant effect of micro/nanoparticles appears to largely be a consequence of their uptake into APC. More importantly, particulate antigens have been shown to be more efficient than soluble antigens for the induction of immune responses. Over the past two decades, we have studied the synthesis and clinical applications of core-corona polymeric nanospheres composed of hydrophobic polystyrene and hydrophilic macromonomers. Core-corona type polymeric nanospheres have applications in various technological and biomedical fields, because their chemical structures and particle size can be easily controlled. In this study, we focused on the development of a HIV-1 vaccine using polymeric nanoparticles. We evaluated the immunization strategies for HIV-1-capturing core-corona type polystyrene nanospheres that would efficiently induce HIV-1-specific IgA responses in female mice and the macaque genital tract. Moreover, based on this research, we attempted to develop novel biodegradable nanoparticles composed of poly (gamma-glutamic acid) (gamma-PGA) for protein-based vaccine delivery. These HIV-1-capturing nanospheres and protein-loaded gamma-PGA nanoparticles have shown unique potential as vaccine carriers.
منابع مشابه
Polymer-basednanoadjuvants for hepatitis C vaccine: The perspectives of immunologists
The hepatitis C virus (HCV) is an infection that affects the liver tissues in humans, leading to the development of effective prophylactic and therapeutic HCV vaccines to prevent a global epidemic. Scientists consider it challenging to produce a therapeutic vaccine for the treatment of hepatocellular carcinoma as opposed to a preventative vaccine. However, several drawbacks are involved with a ...
متن کاملPotential of polymeric particles as future vaccine delivery systems/adjuvants for parenteral and non-parenteral immunization against tuberculosis: A systematic review
Objective(s): Production of effective tuberculosis (TB) vaccine is necessity. However, the development of new subunit vaccines is faced with concerns about their weak immunogenicity. To overcome such problems, polymers-based vaccine delivery systems have been proposed to be used via various routes. The purpose of this study was to determine the potential of polymeric particles as future vaccine...
متن کاملLiposome and polymer-based nanomaterials for vaccine applications
Nanoparticles (NPs) are effective and safe adjuvants for antigen delivery in modern vaccinology. Biodegradable nanomaterials with suitable properties are frequently applied for conjugation or loading with antigens; they protect the antigens from degradation in vivo. NPs are applied as effective delivery system to facilitate antigen uptake by antigen presenting cells (APCs) and especially dendri...
متن کاملPolymer-Based Nanomaterials and Applications for Vaccines and Drugs
Nanotechnology plays a significant role in drug development. As carriers, polymeric nanoparticles can deliver vaccine antigens, proteins, and drugs to the desired site of action. Polymeric nanoparticles with lower cytotoxicity can protect the delivered antigens or drugs from degradation under unfavorable conditions via a mucosal administration route; further, the uptake of nanoparticles by anti...
متن کاملDevelopment of Core-Corona Type Polymeric Nanoparticles as an Anti-HIV- 1 Vaccine
We developed a novel technology for core-corona polymeric nanoparticles having hydrophilic polymer chains with functional groups. Polystyrene nanoparticles immobilized with the mannose-specific lectin concanavalin A could efficiently capture human immunodeficiency virus type 1 (HIV-1) particles and gp120 antigens on their surface. Since the antigen-capturing nanoparticles were capable of induci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan
دوره 127 2 شماره
صفحات -
تاریخ انتشار 2007