Identification of Untrained Facial Image in Combined Global and Local Preserving Feature Space
نویسندگان
چکیده
In real time applications, biometric authentication has been widely regarded as the most foolproof or at least the hardest to forge or spoof. Several research works on face recognition based on appearance, features like intensity, color, textures or shape have been done over the last decade. In those works, mostly the classification is achieved by using the similarity measurement techniques that find the minimum distance among the training and testing feature set. When presenting this leads to the wrong classification when presenting the untrained image or unknown image, since the classification process locates at least one wining cluster that having minimum distance or maximum variance among the existing clusters. But for the real time security related applications, these new facial image should be reported and the necessary action has to be taken accordingly. In this paper we propose the following two techniques for this purpose: i. Uses a threshold value calculated by finding the average of the minimum matching distances of the wrong classifications encountered during the training phase. ii. Uses the fact that the wrong classification increases the ratio of withinclass distance and between-class distance. Experiments have been conducted using the ORL facial database and a fair comparison is made with these two techniques to show the efficiency of these techniques.
منابع مشابه
A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملA Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملSynthesis of human facial expressions based on the distribution of elastic force applied by control points
Facial expressions play an essential role in delivering emotions. Thus facial expression synthesis gain interests in many fields such as computer vision and graphics. Facial actions are generated by contraction and relaxation of the muscles innervated by facial nerves. The combination of those muscle motions is numerous. therefore, facial expressions are often person specific. But in general, f...
متن کاملApplication of Locality Preserving Projections in Face Recognition
Face recognition technology has evolved as an enchanting solution to address the contemporary needs in order to perform identification and verification of identity claims. By advancing the feature extraction methods and dimensionality reduction techniques in the application of pattern recognition, a number of face recognition systems has been developed with distinct degrees of success. Locality...
متن کاملLocal gradient pattern - A novel feature representation for facial expression recognition
Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...
متن کامل