Codelivery of doxorubicin and MDR1-siRNA by mesoporous silica nanoparticles-polymerpolyethylenimine to improve oral squamous carcinoma treatment
نویسندگان
چکیده
Oral cancer is a type of head and neck cancer that is the seventh most frequent cancer and the ninth most frequent cause of death globally. About 90% of oral cancer is of squamous cell carcinoma type. Surgery and radiation with and without chemotherapy are the major treatments for oral cancer. Better advanced treatment is still needed. Multidrug resistance plays an important role in failure of oral cancer chemotherapy. In this study, we tried to fabricate a novel nanoparticle that could carry both MDR1-siRNA to block MDR1 expression and doxorubicin (DOX), a chemotherapy drug, into cancer cells in order to directly kill the cells with little or no effect of multidrug resistance. Results showed that mesoporous silica nanoparticles (MSNP) can be modified by cationic polymerpolyethylenimine (PEI) to obtain positive charges on the surface, which could enable the MSNP to carry MDR1-siRNA and DOX. The transfection efficiency assays demonstrated that the MSNP-PEI-DOX/ MDR1-siRNA was efficiently transfected into KBV cells in vitro. KBV cells transfected with MSNP-PEI-DOX/MDR1-siRNA could effectively decrease gene expression of MDR1 (~70% increase after 72 hours posttreatment) and induce the apoptosis of KBV cells (24.27% after 48 hours posttreatment) in vitro. Importantly, MSNP-PEI-DOX/MDR1-siRNA dramatically reduced the tumor size (81.64% decrease after 28 days posttreatment) and slowed down tumor growth rate compared to the control group in vivo (P<0.05). In the aggregate, newly synthesized MSNP-PEI-DOX/MDR1-siRNA improves cancer chemotherapy effect in terms of treating multidrug-resistant cancer compared to DOX only, clearly demonstrating that MSNP-PEI-DOX/MDR1-siRNA has potential therapeutic application for multidrug-resistant cancer in the future.
منابع مشابه
Redox-responsive mesoporous silica nanoparticles: a physiologically sensitive codelivery vehicle for siRNA and doxorubicin.
AIMS Efficient siRNA/drug codelivery carriers can offer great promises to cancer treatment on account of synergistic effect provided from cancer-associated gene and anticancer drugs. In this work, a redox-responsive drug/siRNA codelivery vehicle based on mesoporous silica nanoparticles was fabricated to simultaneously deliver siRNA and doxorubicin (Dox) in vitro and in vivo. RESULTS The nanop...
متن کاملCodelivery of doxorubicin and triptolide with reduction-sensitive lipid–polymer hybrid nanoparticles for in vitro and in vivo synergistic cancer treatment
Codelivery is a promising strategy to overcome the limitations of single chemotherapeutic agents in cancer treatment. Despite progress, codelivery of two or more different functional drugs to increase anticancer efficiency still remains a challenge. Here, reduction-sensitive lipid-polymer hybrid nanoparticles (LPNPs) drug delivery system composed of monomethoxy-poly(ethylene glycol)-S-S-hexadec...
متن کاملNanolipoparticles-mediated MDR1 siRNA delivery reduces doxorubicin resistance in breast cancer cells and silences MDR1 expression in xenograft model of human breast cancer
Objective(s): P-glycoprotein (P-gp) is an efflux protein, the overexpression of which has been associated with multidrug resistance in various cancers. Although siRNA delivery to reverse P-gp expression may be promising for sensitizing of tumor cells to cytotoxic drugs, the therapeutic use of siRNA requires effective carriers that can deliver siRNA intracellularly with minimal toxicity on targe...
متن کاملApplication of mesoporous silica nanoparticles for drug delivery to cancer cells
Cancer is one of the main causes of death worldwide. Chemotherapy is the most common method for cancer therapy which represent non-specific side effects on normal cells and tissues and drug resistance in cancer cells. There are two main mechanisms for Multi Drug Resistance (MDR) in cancer cells including: drug efflux pump and activation of anti-apoptotic pathways. Cancer chemotherapy disadvanta...
متن کاملSynergistic bactericidal activity of chlorhexidine-loaded, silver-decorated mesoporous silica nanoparticles
Combination of chlorhexidine (CHX) and silver ions could engender synergistic bactericidal effect and improve the bactericidal efficacy. It is highly desired to develop an efficient carrier for the antiseptics codelivery targeting infection foci with acidic microenvironment. In this work, monodisperse mesoporous silica nanoparticle (MSN) nanospheres were successfully developed as an ideal carri...
متن کامل