Ca2+-binding protein 2 inhibits Ca2+-channel inactivation in mouse inner hair cells.
نویسندگان
چکیده
Ca2+-binding protein 2 (CaBP2) inhibits the inactivation of heterologously expressed voltage-gated Ca2+ channels of type 1.3 (CaV1.3) and is defective in human autosomal-recessive deafness 93 (DFNB93). Here, we report a newly identified mutation in CABP2 that causes a moderate hearing impairment likely via nonsense-mediated decay of CABP2-mRNA. To study the mechanism of hearing impairment resulting from CABP2 loss of function, we disrupted Cabp2 in mice (Cabp2LacZ/LacZ ). CaBP2 was expressed by cochlear hair cells, preferentially in inner hair cells (IHCs), and was lacking from the postsynaptic spiral ganglion neurons (SGNs). Cabp2LacZ/LacZ mice displayed intact cochlear amplification but impaired auditory brainstem responses. Patch-clamp recordings from Cabp2LacZ/LacZ IHCs revealed enhanced Ca2+-channel inactivation. The voltage dependence of activation and the number of Ca2+ channels appeared normal in Cabp2LacZ/LacZ mice, as were ribbon synapse counts. Recordings from single SGNs showed reduced spontaneous and sound-evoked firing rates. We propose that CaBP2 inhibits CaV1.3 Ca2+-channel inactivation, and thus sustains the availability of CaV1.3 Ca2+ channels for synaptic sound encoding. Therefore, we conclude that human deafness DFNB93 is an auditory synaptopathy.
منابع مشابه
Rab Interacting Molecules 2 and 3 Directly Interact with the Pore-Forming CaV1.3 Ca2+ Channel Subunit and Promote Its Membrane Expression
Rab interacting molecules (RIMs) are multi-domain proteins that positively regulate the number of Ca2+ channels at the presynaptic active zone (AZ). Several molecular mechanisms have been demonstrated for RIM-binding to components of the presynaptic Ca2+ channel complex, the key signaling element at the AZ. Here, we report an interaction of the C2B domain of RIM2α and RIM3γ with the C-terminus ...
متن کاملSwitching of Ca2+-dependent inactivation of Ca(v)1.3 channels by calcium binding proteins of auditory hair cells.
Ca(V)1.3 channels comprise a vital subdivision of L-type Ca2+ channels: Ca(V)1.3 channels mediate neurotransmitter release from auditory inner hair cells (IHCs), pancreatic insulin secretion, and cardiac pacemaking. Fitting with these diverse roles, Ca(V)1.3 channels exhibit striking variability in their inactivation by intracellular Ca2+. IHCs show generally weak-to-absent Ca2+-dependent inact...
متن کاملCell-type-specific tuning of Cav1.3 Ca2+-channels by a C-terminal automodulatory domain
Cav1.3 L-type Ca(2+)-channel function is regulated by a C-terminal automodulatory domain (CTM). It affects channel binding of calmodulin and thereby tunes channel activity by interfering with Ca(2+)- and voltage-dependent gating. Alternative splicing generates short C-terminal channel variants lacking the CTM resulting in enhanced Ca(2+)-dependent inactivation and stronger voltage-sensitivity u...
متن کاملAlternative splicing of the Ca(v)1.3 channel IQ domain, a molecular switch for Ca2+-dependent inactivation within auditory hair cells.
Native Ca(V)1.3 channels within cochlear hair cells exhibit a surprising lack of Ca2+-dependent inactivation (CDI), given that heterologously expressed Ca(V)1.3 channels show marked CDI. To determine whether alternative splicing at the C terminus of the Ca(V)1.3 gene may produce a hair cell splice variant with weak CDI, we transcript-scanned mRNA obtained from rat cochlea. We found that the alt...
متن کاملPIEZO2 as the anomalous mechanotransducer channel in auditory hair cells
Throughout postnatal maturation of the mouse inner ear, cochlear hair cells display at least two types of mechanically gated ion channel: normal mechanotransducer (MT) channels at the tips of the stereocilia, activated by tension in interciliary tip links, and anomalous mechanosensitive (MS) channels on the top surface of the cells. The anomalous MS channels are responsible for the reverse-pola...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 114 9 شماره
صفحات -
تاریخ انتشار 2017