Splittings of the Metaplectic Covers of Some Reductive Dual Pairs

نویسندگان

  • Shu-Yen Pan
  • SHU-YEN PAN
چکیده

In this paper, we construct a splitting of the metaplectic cover of the reductive dual pairs of orthogonal and symplectic groups or the reductive dual pairs of unitary groups over a nonarchimedean local field with respect to a generalized lattice model of the Weil representation. We also prove a result concerning the splitting that we construct and the theta dichotomy for unitary group. The splitting plays a very crucial role in the study of theta correspondence for p-adic and finite reductive dual pairs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Whittaker Functions on Metaplectic Groups

The theory of Whittaker functions is of crucial importance in the classical study of automorphic forms on adele groups. Motivated by the appearance of Whittaker functions for covers of reductive groups in the theory of multiple Dirichlet series, we provide a study of Whittaker functions on metaplectic covers of reductive groups over local fields. Thesis Supervisor: Benjamin Brubaker Title: Assi...

متن کامل

Geometric Weil representation: local field case

Let k be an algebraically closed field of characteristic > 2, F = k((t)) and G = Sp 2d . In this paper we propose a geometric analog of the Weil representation of the metaplectic group G̃(F ). This is a category of perverse sheaves on some stack, on which G̃(F ) acts by functors. This construction will be used in [5] (and subsequent publications) for the proof of the geometric Langlands functoria...

متن کامل

Whittaker Coefficients of Metaplectic Eisenstein Series

We study Whittaker coefficients for maximal parabolic Eisenstein series on metaplectic covers of split reductive groups. By the theory of Eisenstein series these coefficients have meromorphic continuation and functional equation. However they are not Eulerian and the standard methods to compute them in the reductive case do not apply to covers. For “cominuscule” maximal parabolics, we give an e...

متن کامل

The Metaplectic Casselman-shalika Formula

This paper studies spherical Whittaker functions for central extensions of reductive groups over local fields. We follow the development of Chinta-Offen to produce a metaplectic Casselman-Shalika formula for tame covers of all unramified groups.

متن کامل

ar X iv : 0 81 2 . 38 70 v 1 [ m at h . R T ] 1 9 D ec 2 00 8 DEPTH ZERO REPRESENTATIONS OF NONLINEAR COVERS OF p - ADIC GROUPS

We generalize the methods of Moy-Prasad, in order to define and study the genuine depth zero representations of some nonlinear covers of reductive groups over p-adic local fields. In particular, we construct all depth zero supercuspidal representations of the metaplectic group Mp2n over a p-adic field of odd residue characteristic.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001