Detecting sub-second changes in brain activation patterns during interictal epileptic spike using simultaneous EEG-fMRI
نویسندگان
چکیده
OBJECTIVE Epileptic spikes are associated with rapidly changing brain activation involving the epileptic foci and other brain regions in the "epileptic network". We aim to resolve these activation changes using simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) recordings. METHODS Simultaneous EEG-fMRI recordings from 9 patients with epilepsy were used in the analysis. Our method employed the whole scalp EEG data to generate regressors for the analysis of fMRI data using the general linear model. RESULTS We were able to resolve, with milliseconds temporal resolution, changes in activation patterns involving suspected epileptic foci and other brain regions in the epileptic network during spike and slow wave. Using summary maps (called SSWAS maps) which show the activation frequency of voxels, we found that suspected epileptic foci tend to be significantly active during this interval. SSWAS maps also enabled the detection of the epileptic foci in 4 of 5 patients where the conventional event-timing-based analysis failed to identify. CONCLUSION These findings demonstrated the efficacy of the method and the potential application of SSWAS maps to identify epileptic foci. SIGNIFICANCE The method could help resolve activation changes during epileptic spike and could provide insights into the underlying pathophysiology of these changes.
منابع مشابه
EEG-fMRI study of the ictal and interictal epileptic activity in patients with eyelid myoclonia with absences.
PURPOSE To investigate the blood oxygenation level-dependent (BOLD) signal changes correlated with ictal and interictal epileptic discharges using electroencephalography-correlated functional magnetic resonance imaging (EEG-fMRI) in patients with eyelid myoclonia with absences (EMA) and then to explore the pathophysiological mechanisms of epileptic discharges and their effect on brain function....
متن کاملSensitivity and Specificity of Interictal EEG-fMRI for Detecting the Ictal Onset Zone at Different Statistical Thresholds
There is currently a lack of knowledge about electroencephalography (EEG)-functional magnetic resonance imaging (fMRI) specificity. Our aim was to define sensitivity and specificity of blood oxygen level dependent (BOLD) responses to interictal epileptic spikes during EEG-fMRI for detecting the ictal onset zone (IOZ). We studied 21 refractory focal epilepsy patients who had a well-defined IOZ a...
متن کاملImaging of epileptic activity using EEG - correlated functional MRI
This thesis describes the method of EEG-correlated fMRI and its application to patients with epilepsy. First, an introduction on MRI and functional imaging methods in the field of epilepsy is provided. Then, the present and future role of EEG-correlated fMRI in the investigation of the epilepsies is discussed. The fourth chapter reviews the important practicalities of EEG-correlated fMRI that w...
متن کاملIdentification of Pre-Spike Network in Patients with Mesial Temporal Lobe Epilepsy
BACKGROUND Seizures and interictal spikes in mesial temporal lobe epilepsy (MTLE) affect a network of brain regions rather than a single epileptic focus. Simultaneous electroencephalography and functional magnetic resonance imaging (EEG-fMRI) studies have demonstrated a functional network in which hemodynamic changes are time-locked to spikes. However, whether this reflects the propagation of n...
متن کاملStudying Spontaneous Brain Activity Using Eeg-fmri and Event-related Ica
Introduction: Simultaneous EEG and fMRI recordings (EEG-fMRI) can detect haemodynamic changes associated with spontaneous events observed on the EEG, such as interictal epileptiform discharges (“spikes”). Event-related analyses of these studies typically assume a canonical HRF model and define the start of the event as the onset of EEG changes. There have been two recent reports, however, of BO...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical Neurophysiology
دوره 129 شماره
صفحات -
تاریخ انتشار 2017