Fabrication of Porous Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Monoliths via Thermally Induced Phase Separation

نویسندگان

  • Takashi Tsujimoto
  • Hiroshi Uyama
  • Frank Wiesbrock
چکیده

This study deals with the fabrication of biodegradable porous materials from bacterial polyester, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P3HB3HHx), via thermally induced phase separation. P3HB3HHx monoliths with topological porous structure were prepared by dissolution of P3HB3HHx in dimethyl sulfoxide (DMSO) at 85 ̋C and subsequent quenching. The microstructure of the resulting P3HB3HHx monoliths was changed by the P3HB3HHx concentration of the polymer solution. Differential scanning calorimetry and polarized optical microscope analysis revealed that the P3HB3HHx monoliths crystallized during phase separation and the subsequent aging. The mechanical properties, such as compression modulus and stress, of the monoliths depended on the 3-hydroxyhexanoate content of P3HB3HHx. Furthermore, the P3HB3HHx monolith absorbed linseed oil in preference to water in a plant oil–water mixture. In combination with the biodegradable character of P3HB3HHx, the present study is expected to contribute to the development of bio-based materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of Gelatin Scaffolds Using Thermally Induced Phase Separation Technique

Gelatin is considered as a partially degraded product of collagen and it is a biodegradable polymer which can be used to produce scaffolds for tissue engineering. Three-dimensional, porous gelatin scaffolds were fabricated by thermally induced phase separation and freeze-drying method. Their porous structure and pore size were characterized by scanning electron microscopy. Scaffolds with differ...

متن کامل

Formation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by PHA synthase from Ralstonia eutropha.

The acetoacetyl-CoA reductase and the polyhydroxyalkanoate (PHA) synthase from Ralstonia eutropha (formerly Alcaligenes eutrophus) were expressed in Escherichia coli, Klebsiella aerogenes, and PHA-negative mutants of R. eutropha and Pseudomonas putida. While expression in E. coli strains resulted in the accumulation of poly(3-hydroxybutyrate) [PHB], strains of R. eutropha, P. putida and K. aero...

متن کامل

Additive Manufacturing of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/poly(ε-caprolactone) Blend Scaffolds for Tissue Engineering

Additive manufacturing of scaffolds made of a polyhydroxyalkanoate blended with another biocompatible polymer represents a cost-effective strategy for combining the advantages of the two blend components in order to develop tailored tissue engineering approaches. The aim of this study was the development of novel poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/ poly(ε-caprolactone) (PHBHHx/PCL) b...

متن کامل

Nanofibrous polyhydroxyalkanoate matrices as cell growth supporting materials.

Polyhydroxyalkanoates (PHAs) have been demonstrated to be a family of biopolymers with good biodegradability and biocompatibility. To mimic the real microenvironment of extracellular matrix (ECM) for cell growth, novel nanofiber matrices based on PHA polymers were prepared via a phase separation process. Three-dimensional interconnected fibrous networks were observed in these matrices with aver...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016