Thalamocortical Inputs Show Post-Critical-Period Plasticity

نویسندگان

  • Xin Yu
  • Seungsoo Chung
  • Der-Yow Chen
  • Shumin Wang
  • Stephen J. Dodd
  • Judith R. Walters
  • John T.R. Isaac
  • Alan P. Koretsky
چکیده

Experience-dependent plasticity in the adult brain has clinical potential for functional rehabilitation following central and peripheral nerve injuries. Here, plasticity induced by unilateral infraorbital (IO) nerve resection in 4-week-old rats was mapped using MRI and synaptic mechanisms were elucidated by slice electrophysiology. Functional MRI demonstrates a cortical potentiation compared to thalamus 2 weeks after IO nerve resection. Tracing thalamocortical (TC) projections with manganese-enhanced MRI revealed circuit changes in the spared layer 4 (L4) barrel cortex. Brain slice electrophysiology revealed TC input strengthening onto L4 stellate cells due to an increase in postsynaptic strength and the number of functional synapses. This work shows that the TC input is a site for robust plasticity after the end of the previously defined critical period for this input. Thus, TC inputs may represent a major site for adult plasticity in contrast to the consensus that adult plasticity mainly occurs at cortico-cortical connections.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long-Term Depression at Thalamocortical Synapses in Developing Rat Somatosensory Cortex

Sensory experience during an early critical period guides the development of thalamocortical circuits in many cortical areas. This process has been hypothesized to involve long-term potentiation (LTP) and long-term depression (LTD) at thalamocortical synapses. Here, we show that thalamocortical synapses in rat barrel cortex can express LTD, and that LTD is most readily induced during a developm...

متن کامل

Lesion-induced thalamocortical axonal plasticity in the S1 cortex is independent of NMDA receptor function in excitatory cortical neurons.

Neural activity plays an important role in refinement and plasticity of synaptic connections in developing vertebrate sensory systems. The rodent whisker-barrel pathway is an excellent model system to investigate the role of activity in formation of patterned neural connections and their plasticity. When whiskers on the snout or the sensory nerves innervating them are damaged during a critical ...

متن کامل

Barrel Cortex Critical Period Plasticity Is Independent of Changes in NMDA Receptor Subunit Composition

The regulation of NMDA receptor (NMDAR) subunit composition and expression during development is thought to control the process of thalamocortical afferent innervation, segregation, and plasticity. Thalamocortical synaptic plasticity in the mouse is dependent on NMDARs containing the NR2B subunit, which are the dominant form during the "critical period" window for plasticity. Near the end of th...

متن کامل

Layer-specific experience-dependent rewiring of thalamocortical circuits.

Thalamocortical circuits are central to sensory and cognitive processing. Recent work suggests that the thalamocortical inputs onto L4 and L6, the main input layers of neocortex, are activated differently by visual stimulation. Whether these differences depend on layer-specific organization of thalamocortical circuits; or on specific properties of synapses onto receiving neurons is unknown. Her...

متن کامل

Input-specific critical periods for experience-dependent plasticity in layer 2/3 pyramidal neurons.

Critical periods for experience-dependent plasticity have been well characterized within sensory cortex, in which the ability of altered sensory input to drive firing rate changes has been demonstrated across brain areas. Here we show that rapid experience-dependent changes in the strength of excitatory synapses within mouse primary somatosensory cortex exhibit a critical period that is input s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 74  شماره 

صفحات  -

تاریخ انتشار 2012