Cosmic ray-induced stratospheric aerosols: A possible connection to polar ozone depletions

نویسندگان

  • E. A. Kasatkina
  • O. I. Shumilov
چکیده

The model calculations of altitude distribution of CN (condensation nuclei), plausible centers of sulfate aerosol formation after the occurrence of GLE, are presented. Events with relativistic solar protons (i.e. protons with energies >450 MeV) are observed at ground level by neutron monitors and called ground-level events (GLEs) (Shea and Smart, 2001). Analysis of experimental data and model calculations permits us to explain some distinctions observed in ozone total content (OTC) variations during several GLEs. For example, model simulations show a significant CN concentration enhancement during the May 1990 GLEs of relatively “moderate” magnitude, when polar ozone “miniholes” (OTC depletions up to 20%) have been observed, while no OTC variations and considerable aerosol enhancements were seen during more powerful GLEs (4 August 1972, 2 May 1998, 14 July 2000) (Reagan et al., 1981; Shumilov et al., 1995, 2003). Our results demonstrate that “moderate” GLEs may increase aerosol content significantly and cause ozone “mini-hole” creation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of cosmic rays on stratospheric chlorine chemistry and ozone depletion.

Dissociation induced by cosmic rays of chlorofluorocarbons (CFC) and HCl on the surfaces of polar stratospheric clouds (PSC) has been suggested as playing a significant role in causing the ozone hole. However, observed stratospheric CFC distributions are inconsistent with a destruction of CFC on PSC surfaces and no significant correlation exists between ozone levels and cosmic-ray activity insi...

متن کامل

Ultraviolet Radiation in the Arctic: The Impact of Potential Ozone Depletions and Cloud Effects

An atmospheric radiation model is used to study the combined effects of ozone depletions/redistributions and particulate clouds on atmospheric heating/photolysis rates and ultraviolet radiation reaching the biosphere. Four types of particulate clouds prevalent in the summertime Arctic are considered: stratospheric aerosols, tropospheric aerosols (Arctic haze), cirrus clouds, and stratus clouds....

متن کامل

Contributions of External Forcings to Southern Annular Mode Trends

An observed trend in the Southern Hemisphere annular mode (SAM) during recent decades has involved an intensification of the polar vortex. The source of this trend is a matter of scientific debate with stratospheric ozone losses, greenhouse gas increases, and natural variability all being possible contenders. Because it is difficult to separate the contribution of various external forcings to t...

متن کامل

The impact of polar stratospheric ozone loss on Southern Hemisphere stratospheric circulation and climate

The impact of polar stratospheric ozone loss resulting from chlorine activation on polar stratospheric clouds is examined using a pair of model integrations run with the fully coupled chemistry climate model UM-UKCA. Suppressing chlorine activation through heterogeneous reactions is found to produce modelled ozone differences consistent with observed ozone differences between the present and pr...

متن کامل

Fundamental differences between Arctic and Antarctic ozone depletion.

Antarctic ozone depletion is associated with enhanced chlorine from anthropogenic chlorofluorocarbons and heterogeneous chemistry under cold conditions. The deep Antarctic "hole" contrasts with the generally weaker depletions observed in the warmer Arctic. An unusually cold Arctic stratospheric season occurred in 2011, raising the question of how the Arctic ozone chemistry in that year compares...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005