The velocity of microtubule sliding: its stability and load dependency.

نویسنده

  • Sumio Ishijima
چکیده

It is now well understood that ATP-driven active sliding between the doublet microtubules in the sperm axoneme generates flagellar movement. However, much remains to be learned about how this movement is controlled. Detailed analyses of the flagellar beating of the mammalian spermatozoa revealed that there were two beating modes at a constant rate of microtubule sliding: that is, a nearly constant-curvature beating in nonhyperactivated spermatozoa and a nearly constant-frequency beating in hyperactivated spermatozoa. The constant rate of microtubule sliding suggests that the beat frequency and waveform of the flagellar beating are dependently regulated. Comparison of the sliding velocity of several mammalian and sea urchin sperm flagella with their mechanical property clarified that the sliding velocity of the microtubule was determined by the stiffness of the flagellum at its base, and that its relationship was expressed by a logarithmic equation that is similar to the classical force-velocity equation of the muscle contraction. Data from sea urchin spermatozoa also satisfied the equation, suggesting that the same microtubule sliding system functions in both the mammalian and echinoderm spermatozoa.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Adaptive Fuzzy Sliding Mode Control of Permanent Magnet Stepper Motor with Unknown Parameters and Load Torque

In this paper, robust adaptive fuzzy sliding mode control is designed to control the Permanent Magnet (PM) stepper motor in the presence of model uncertainties and disturbances. In doing so, the nonlinear model is converted to canonical form, then, for designing the controller, the robust sliding mode control is designed to decrease the effects of uncertainties and disturbances. A class of fuzz...

متن کامل

SYNTHESIS OF FUNCTIONALLY GRADED Al LM25/ZIRCONIA COMPOSITE AND ITS SLIDING WEAR CHARACTERIZATION USING RESPONSE SURFACE METHODOLOGY

Functionally graded aluminium/zirconia metal matrix composite was fabricated using stir casting technique followed by horizontal centrifugal casting process and a hollow cylindrical functionally graded composite (150 x 150 x 16 mm) was obtained with centrifuging speed of 1200 rpm. The microstructural evaluation and hardness test was carried out on the outer and inner surface of the functionally...

متن کامل

Magnetic fluid lubrication of porous pivoted slider bearing with slip and squeeze velocity

In this paper the problem on “Magnetic fluid lubrication of porous-pivoted slider bearing with slip velocity by N Ahmad et.al.[7]” has been recapitulated using Jenkin’s model [4] with the additional effect of squeeze velocity of the above plate. It is found that while discussing the above problem, [7] has stated but ignored the term , where +, in their study (Refer equation(2.2)). This paper re...

متن کامل

The mode of ATP-dependent microtubule-kinesin sliding in the auxotonic condition.

Kinesin is a motor protein that converts chemical energy derived from ATP hydrolysis into mechanical work to transport cellular components along microtubules. We studied the properties of ATP-dependent microtubule-kinesin sliding with two different in vitro assay systems. In one assay system, a kinesin-coated glass microneedle (elastic coefficient, 1-2.5 pN microns -1) was made to slide along a...

متن کامل

Energy Optimization of Under-actuated Crane model for Time-Variant Load Transferring using Optimized Adaptive Combined Hierarchical Sliding Mode Controller

This paper designs an Optimized Adaptive Combined Hierarchical Sliding Mode Controller (OACHSMC) for a time-varying crane model in presence of uncertainties. Uncertainties have always been one of the most important challenges in designing control systems, which include the unknown parameters or un-modeled dynamics in the systems. Sliding mode controller (SMC) is able to compensate the system in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell motility and the cytoskeleton

دوره 64 11  شماره 

صفحات  -

تاریخ انتشار 2007