ar X iv : 1 00 9 . 34 64 v 2 [ m at h . D S ] 9 N ov 2 01 0 COMPUTABILITY OF BROLIN - LYUBICH MEASURE

نویسنده

  • MICHAEL YAMPOLSKY
چکیده

Brolin-Lyubich measure λR of a rational endomorphism R : Ĉ → Ĉ with degR ≥ 2 is the unique invariant measure of maximal entropy hλR = htop(R) = log d. Its support is the Julia set J(R). We demonstrate that λR is always computable by an algorithm which has access to coefficients of R, even when J(R) is not computable. In the case when R is a polynomial, BrolinLyubich measure coincides with the harmonic measure of the basin of infinity. We find a sufficient condition for computability of the harmonic measure of a domain, which holds for the basin of infinity of a polynomial mapping, and show that computability may fail for a general domain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : h ep - p h / 01 11 39 6 v 1 2 9 N ov 2 00 1 SOFT INTERACTIONS

A brief introduction to the theory and phenomenology of soft interactions is given, focusing on total and elastic cross sections and multiparticle production.

متن کامل

ar X iv : h ep - l at / 0 01 10 26 v 2 1 3 N ov 2 00 0 1 QCD vacuum structure

Several issues related to the structure of the QCD vacuum are reviewed. We concentrate mostly on results concerning instantons and center vortices.

متن کامل

ar X iv : 1 61 1 . 00 87 9 v 1 [ m at h - ph ] 3 N ov 2 01 6 Stable laws for chaotic billiards with cusps at flat points ∗ PAUL

We consider billiards with a single cusp where the walls meeting at the vertex of the cusp have zero one-sided curvature, thus forming a flat point at the vertex. For Hölder continuous observables, we show that properly normalized Birkoff sums, with respect to the billiard map, converge in law to a totally skewed α-stable law.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010