Quantification of Shallow Groundwater Nutrient Dynamics in Septic Areas

نویسندگان

  • Ying Ouyang
  • Jia-En Zhang
چکیده

Of all groundwater pollution sources, septic systems are the second largest source of groundwater nitrate contamination in USA. This study investigated shallow groundwater (SGW) nutrient dynamics in septic areas at the northern part of the Lower St. Johns River Basin, Florida, USA. Thirty-five SGW-monitoring wells, located at nine different urban areas served by septic systems, were used to collect the SGW samples seasonally and/or biweekly for a duration of 3 years from 2003 to 2006. Analytical results showed that there were 16 wells with nitrate concentrations exceeding the US Environmental Protection Agency's drinking water limit (10 mg L). There also were 11 and 14 wells with total Kjeldahl nitrogen (TKN) and total phosphorus (TP) concentrations, respectively, exceeding the ambient water quality criteria (0.9 mg L for TKN and 0.04 mg L for TP) recommended for rivers and streams in nutrient Ecoregion XII (Southeast USA). In general, site variations are much greater than seasonal variations in SGW nutrient concentrations. A negative correlation existed between nitrate/nitrite–nitrogen (NOx–N) and TKN as well as between NOx–N and ammonium (NHþ 4 ), whereas a positive correlation occurred between TKN andNHþ 4 . Furthermore, a positive correlation was found between reduction and oxidation (redox) potential and water level, while no correlation was observed between potassium concentration and redox potential. This study demonstrates a need to investigate the potential adverse impacts of SGW nutrients from the septic areas upon the deeper groundwater quality due to the nutrient penetration and upon the surface water quality due to the nutrient discharge.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Septic Systems Contribution to Phosphorus in Shallow Groundwater: Field-Scale Studies Using Conventional Drainfield Designs

Septic systems can be a potential source of phosphorus (P) in groundwater and contribute to eutrophication in aquatic systems. Our objective was to investigate P transport from two conventional septic systems (drip dispersal and gravel trench) to shallow groundwater. Two new in-situ drainfields (6.1 m long by 0.61 m wide) with a 3.72 m2 infiltrative surface were constructed. The drip dispersal ...

متن کامل

Artificial Sweeteners Reveal Septic System Effluent in Rural Groundwater.

It has been widely documented that municipal wastewater treatment plant effluents are a major source of artificial sweeteners to surface waters. However, in rural areas, the extent to which septic systems contribute these same compounds to groundwater aquifers is largely unknown. We examined the occurrence of four commonly used artificial sweeteners in an unconfined sand aquifer that serves as ...

متن کامل

Using Cl/Br ratios and other indicators to assess potential impacts on groundwater quality from septic systems: A review and examples from principal aquifers in the United States

A detailed review was made of chemical indicators used to identify impacts from septic tanks on groundwater quality. Potential impacts from septic tank leachate on groundwater quality were assessed using the mass ratio of chloride–bromide (Cl/Br), concentrations of selected chemical constituents, and ancillary information (land use, census data, well depth, soil characteristics) for wells in pr...

متن کامل

Evaluating Alternative Hydraulic Solutions to Limit Nutrient Contamination of an Aquifer in Southern California

Many small communities depend on groundwater sources for drinking water and they often use septic tanks for wastewater treatment and disposal. Nitrate and other pollutants leaking from poorly designed septic tank systems can percolate to the aquifers and alter quality of the groundwater. This study describes a groundwater model developed using Visual MODFLOW for an aquifer that is used as a wat...

متن کامل

Ecology: Impact of Nutrient Loading on Estuaries and Marshes

Childs River and Quashnet River, combined with the absence of such spikes at Sage Lot and Flat Ponds, suggests input by plumes from septic tanks. Mean NI&+ concentration in groundwater varied over a relatively small range across the three sites (Fig. 1, middle panels). NH4+ contributed less than 5% of the mean dissolved inorganic nitrogen (DIN) at Childs and Quashnet Rivers. Most of the inorgan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011