Genomic alterations in mucins across cancers
نویسندگان
چکیده
The significance of mucins in cancers has led to the development of novel biomarkers and therapeutic agents against cancers. Despite significant advances in the understanding of mucins, systemic investigations into the role of mucins in cancer biology focusing particularly on the histological subtypes and stages, along with other variables, are yet to be carried out to discover potential novel functions and cancer-specific roles. Here, we investigated 11 mucin expressing cancers for DNA mutations, mRNA expression, copy number, methylation, and the impacts these genomic features may have on patient survival by utilizing The Cancer Genome Atlas dataset. We demonstrate that mucin DNA mutations have a significant rate, pattern, and impact on cancer patient survival depending on the tissue of origin. This includes a frequent T112P mutation in MUC1 that is seen in half of the pancreatic MUC1 mutations, as well as being present in other cancers. We also observed a very frequent MUC4 mutation at H4205, which correlated with survival outcomes in patients. Furthermore, we observed significant alterations in mucin mRNA expression in multiple tumor types. Our results demonstrate de novo expression of certain mucins in cancer tissues, including MUC21 in colorectal cancers. We observed a general decrease in promoter methylation for mucins, which correlated with decreased expression of many genes, such as MUC15 in kidney cancers. Lastly, several mucin gene loci demonstrated copy number increase in multiple histological subtypes. Thus, our study presents a comprehensive analysis of genomic alterations in mucins and their corresponding roles in cancer progression.
منابع مشابه
Chromosomal alterations in ulcerative colitis-related and sporadic colorectal cancers by comparative genomic hybridization.
Both ulcerative colitis (UC)-related and sporadic colorectal cancers are thought to evolve through a multistep process of genomic instability, accumulation of genomic alterations, and clonal expansion. This process may involve different genomic changes in UC-related cancers than in sporadic cancers because of the origin of UC-related cancers in an inflammatory field. This study was designed to ...
متن کاملCooperative genomic alteration network reveals molecular classification across 12 major cancer types
The accumulation of somatic genomic alterations that enables cells to gradually acquire growth advantage contributes to tumor development. This has the important implication of the widespread existence of cooperative genomic alterations in the accumulation process. Here, we proposed a computational method HCOC that simultaneously consider genetic context and downstream functional effects on can...
متن کاملSpecific Genomic Regions Are Differentially Affected by Copy Number Alterations across Distinct Cancer Types, in Aggregated Cytogenetic Data
BACKGROUND Regional genomic copy number alterations (CNA) are observed in the vast majority of cancers. Besides specifically targeting well-known, canonical oncogenes, CNAs may also play more subtle roles in terms of modulating genetic potential and broad gene expression patterns of developing tumors. Any significant differences in the overall CNA patterns between different cancer types may thu...
متن کاملCancer Genes and Genomics Progressive Genomic Instability in the FVB/Kras Mouse Model of Lung Cancer
Alterations in DNA copy number contribute to the development and progression of cancers and are common in epithelial tumors. We have used array Comparative Genomic Hybridization (aCGH) to visualize DNA copy number alterations across the genomes of lung tumors in the Kras model of lung cancer. Copy number gain involving the Kras locus, as focal amplification or whole chromosome gain, is the most...
متن کاملCancer type-dependent genetic interactions between cancer driver alterations indicate plasticity of epistasis across cell types
Cancers, like many diseases, are normally caused by combinations of genetic alterations rather than by changes affecting single genes. It is well established that the genetic alterations that drive cancer often interact epistatically, having greater or weaker consequences in combination than expected from their individual effects. In a stringent statistical analysis of data from > 3,000 tumors,...
متن کامل