Interlayer Bond Formation in Black Phosphorus at High Pressure
نویسندگان
چکیده
Black phosphorus was compressed at room temperature across the A17, A7 and simple-cubic phases up to 30 GPa, using a diamond anvil cell and He as pressure transmitting medium. Synchrotron X-ray diffraction showed the persistence of two previously unreported peaks related to the A7 structure in the pressure range of the simple-cubic phase. The Rietveld refinement of the data demonstrates the occurrence of a two-step mechanism for the A7 to simple-cubic phase transition, indicating the existence of an intermediate pseudo simple-cubic structure. From a chemical point of view this study represents a deep insight on the mechanism of interlayer bond formation during the transformation from the layered A7 to the non-layered simple-cubic phase of phosphorus, opening new perspectives for the design, synthesis and stabilization of phosphorene-based systems. As superconductivity is concerned, a new experimental evidence to explain the anomalous pressure behavior of Tc in phosphorus below 30 GPa is provided.
منابع مشابه
Interlayer breathing and shear modes in few-layer black phosphorus.
The interlayer breathing and shear modes in few-layer black phosphorus are investigated for their symmetry and lattice dynamical properties. The symmetry groups for the even-layer and odd-layer few-layer black phosphorus are utilized to determine the irreducible representation and the infrared and Raman activity for the interlayer modes. The valence force field model is applied to calculate the...
متن کاملNatural Bond Orbital (NBO) Study of (5H-tetrazol-1-yl)(triphenylphosphine)gold [Au(tetz)(PPh3)]
In this research work, we studied theoretically the structural properties of (5H-tetrazol-1-yl)(triphenylphosphine)gold or [Au(tetz)(PPh3)] by density functional theory (DFT) method at LANL2DZ level. All calculations were performed at 298.15 K and 1 atmosphere. Firstly, the bond lengths, bond angles, dihedral angles and natural charge density on atoms of the compound were calculated. The depend...
متن کاملFormation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes.
High specific capacity battery electrode materials have attracted great research attention. Phosphorus as a low-cost abundant material has a high theoretical specific capacity of 2596 mAh/g with most of its capacity at the discharge potential range of 0.4-1.2 V, suitable as anodes. Although numerous research progress have shown other high capacity anodes such as Si, Ge, Sn, and SnO2, there are ...
متن کاملLow-Frequency Interlayer Breathing Modes in Few-Layer Black Phosphorus.
As a new two-dimensional layered material, black phosphorus (BP) is a very promising material for nanoelectronics and optoelectronics. We use Raman spectroscopy and first-principles theory to characterize and understand the low-frequency (LF) interlayer breathing modes (<100 cm(-1)) in few-layer BP for the first time. Using a laser polarization dependence study and group theory analysis, the br...
متن کاملInterlayer electronic hybridization leads to exceptional thickness-dependent vibrational properties in few-layer black phosphorus.
Stacking two-dimensional (2D) materials into multi-layers or heterostructures, known as van der Waals (vdW) epitaxy, is an essential degree of freedom for tuning their properties on demand. Few-layer black phosphorus (FLBP), a material with high potential for nano- and optoelectronics applications, appears to have interlayer couplings much stronger than graphene and other 2D systems. Indeed, th...
متن کامل