The c-Jun/RHOB/AKT pathway confers resistance of BRAF-mutant melanoma cells to MAPK inhibitors
نویسندگان
چکیده
The response of BRAF-mutant melanoma patients to BRAF inhibitors is dramatically impaired by secondary resistances and rapid relapse. So far, the molecular mechanisms driving these resistances are not completely understood. Here, we show that, in BRAF-mutant melanoma cells, inhibition of BRAF or its target MEK induces RHOB expression by a mechanism that depends on the transcription factor c-Jun. In those cells, RHOB deficiency causes hypersensitivity to BRAF and MEK inhibitors-induced apoptosis. Supporting these results, loss of RHOB expression in metastatic melanoma tissues is associated with an increased progression-free survival of BRAF-mutant patients treated with vemurafenib. Following BRAF inhibition, RHOB activates AKT whose inhibition causes hypersensitivity of BRAF-mutant melanoma cells to BRAF inhibitors. In mice, AKT inhibition synergizes with vemurafenib to block tumor growth of BRAF-mutant metastatic melanoma. Our findings reveal that BRAF inhibition activates a c-Jun/RHOB/AKT pathway that promotes tumor cell survival and further support a role of this pathway in the resistance of melanoma to vemurafenib. Our data also highlight the importance of using RHOB tumor levels as a biomarker to predict vemurafenib patient's response and to select those that would benefit of the combination with AKT inhibitors.
منابع مشابه
Reversing Melanoma Cross-Resistance to BRAF and MEK Inhibitors by Co-Targeting the AKT/mTOR Pathway
BACKGROUND The sustained clinical activity of the BRAF inhibitor vemurafenib (PLX4032/RG7204) in patients with BRAF(V600) mutant melanoma is limited primarily by the development of acquired resistance leading to tumor progression. Clinical trials are in progress using MEK inhibitors following disease progression in patients receiving BRAF inhibitors. However, the PI3K/AKT pathway can also induc...
متن کاملInsulin induces drug resistance in melanoma through activation of the PI3K/Akt pathway
INTRODUCTION There is currently no curative treatment for melanoma once the disease spreads beyond the original site. Although activation of the PI3K/Akt pathway resulting from genetic mutations and epigenetic deregulation of its major regulators is known to cause resistance of melanoma to therapeutic agents, including the conventional chemotherapeutic drug dacarbazine and the Food and Drug Adm...
متن کاملmiR-7 reverses the resistance to BRAFi in melanoma by targeting EGFR/IGF-1R/CRAF and inhibiting the MAPK and PI3K/AKT signaling pathways
MicroRNAs (miRNAs) are attractive therapeutic targets for various therapy-resistant tumors. However, the association between miRNA and BRAF inhibitor resistance in melanoma remains to be elucidated. We used microarray analysis to comprehensively study the miRNA expression profiling of vemurafenib resistant (VemR) A375 melanoma cells in relation to parental A375 melanoma cells. MicroRNA-7 (miR-7...
متن کاملCancer Therapy: Preclinical BRAF Inhibition Stimulates Melanoma-Associated Macrophages to Drive Tumor Growth
Purpose: To investigate the roles of melanoma-associated macrophages in melanoma resistance to BRAF inhibitors (BRAFi). Experimental Design: An in vitro macrophage and melanoma cell coculture system was used to investigate whether macrophages play a role in melanoma resistance to BRAFi. The effects of macrophages in tumor resistance were examined by proliferation assay, cell death assay, and We...
متن کاملPrimary cross-resistance to BRAFV600E-, MEK1/2- and PI3K/mTOR-specific inhibitors in BRAF-mutant melanoma cells counteracted by dual pathway blockade.
Intrinsic cross-resistance to inhibition of different signaling pathways may hamper development of combinatorial treatments in melanoma, but the relative frequency of this phenotype and the strategies to overcome this hurdle remain poorly understood. Among 49 BRAF-mutant melanoma cell lines from patients not previously treated with target therapy, 21 (42.9%) showed strong primary resistance (IC...
متن کامل