On Numerical Entropy Inequalities for a Class of Relaxed Schemes
نویسندگان
چکیده
In [4], Jin and Xin developed a class of firstand second-order relaxing schemes for nonlinear conservation laws. They also obtained the relaxed schemes for conservation laws by using a Hilbert expansion for the relaxing schemes. The relaxed schemes were proved to be total variational diminishing (TVD) in the zero relaxation limit for scalar equations. In this paper, by properly choosing the numerical entropy flux, we show that the relaxed schemes also satisfy the entropy inequalities. As a consequence, the L1 convergence rate of 0(y/At) for the relaxed schemes can be established.
منابع مشابه
On the Vector Variational-like Inequalities with Relaxed η-α Pseudomonotone Mappings
In this paper we introduce some new conditions of the solu- tions existence for variational-like inequalities with relaxed &eta-&alpha pseu- domonotone mappings in Banach spaces. The advantage of these new conditions is that they are easier to be veried than those that appear in some of the previous corresponding articles.
متن کاملA Local Entropy Minimum Principle for Deriving Entropy Preserving Schemes
Abstract. The present work deals with the establishment of stability conditions of finite volume methods to approximate weak solutions of the general Euler equations to simulate compressible flows. In oder to ensure discrete entropy inequalities, we derive a new technique based on a local minimum principle to be satisfied by the specific entropy. Sufficient conditions are exhibited to satisfy t...
متن کاملHigh-Order Schemes, Entropy Inequalities, and Nonclassical Shocks
We are concerned with the approximation of undercompressive, regularizationsensitive, nonclassical solutions of hyperbolic systems of conservation laws by high-order accurate, conservative, and semidiscrete finite difference schemes. Nonclassical shock waves can be generated by diffusive and dispersive terms kept in balance. Particular attention is given here to a class of systems of conservati...
متن کاملA Relaxed Extra Gradient Approximation Method of Two Inverse-Strongly Monotone Mappings for a General System of Variational Inequalities, Fixed Point and Equilibrium Problems
متن کامل
A note on inequalities for Tsallis relative operator entropy
In this short note, we present some inequalities for relative operator entropy which are generalizations of some results obtained by Zou [Operator inequalities associated with Tsallis relative operator entropy, {em Math. Inequal. Appl.} {18} (2015), no. 2, 401--406]. Meanwhile, we also show some new lower and upper bounds for relative operator entropy and Tsallis relative o...
متن کامل