Mitochondrial Structure and Function Are Disrupted by Standard Isolation Methods
نویسندگان
چکیده
Mitochondria regulate critical components of cellular function via ATP production, reactive oxygen species production, Ca(2+) handling and apoptotic signaling. Two classical methods exist to study mitochondrial function of skeletal muscles: isolated mitochondria and permeabilized myofibers. Whereas mitochondrial isolation removes a portion of the mitochondria from their cellular environment, myofiber permeabilization preserves mitochondrial morphology and functional interactions with other intracellular components. Despite this, isolated mitochondria remain the most commonly used method to infer in vivo mitochondrial function. In this study, we directly compared measures of several key aspects of mitochondrial function in both isolated mitochondria and permeabilized myofibers of rat gastrocnemius muscle. Here we show that mitochondrial isolation i) induced fragmented organelle morphology; ii) dramatically sensitized the permeability transition pore sensitivity to a Ca(2+) challenge; iii) differentially altered mitochondrial respiration depending upon the respiratory conditions; and iv) dramatically increased H(2)O(2) production. These alterations are qualitatively similar to the changes in mitochondrial structure and function observed in vivo after cellular stress-induced mitochondrial fragmentation, but are generally of much greater magnitude. Furthermore, mitochondrial isolation markedly altered electron transport chain protein stoichiometry. Collectively, our results demonstrate that isolated mitochondria possess functional characteristics that differ fundamentally from those of intact mitochondria in permeabilized myofibers. Our work and that of others underscores the importance of studying mitochondrial function in tissue preparations where mitochondrial structure is preserved and all mitochondria are represented.
منابع مشابه
O-9: The Central Role of Mitochondrial Function in Quality of Human Oocyte
Background: Mitochondria are the most aboudent and small essential organelles found in eukaryotic cells. These are semiautonomous organelles for the production of cellular ATP that through its various biochemical pathways. The primary pathway for ATP production is OXPHOS via the electron transfer chain (ETC) which is encoded by nuclear DNA and mtdna genomes. Mitochondria consist of double stran...
متن کاملPopulation genetic structure of the white sardine, Sardinella albella, in the Persian Gulf and Sea of Oman by analysis of mitochondrial control region
Several studies on the white sardine: Sardinella albella, have focused on the identification of stock composition and behavior. In this study population genetic structure and historical demography of S. albella along the cost of the Persian Gulf and Sea of Oman were investigated with a 500-bp segment of mt-DNA control region. In total 40 samples were collected from 3 locations: Jask in Sea of O...
متن کاملBase Isolation Systems – A State of the Art Review According to Their Mechanism
Seismic isolation is a method to reduce the destructive effects of earthquakes on a structure in which the structure is separated from its foundation by devices called seismic isolators. As a result, the horizontal movements of the earthquake transmitted to the structure are reduced. The seismic isolation is used for both newly constructed structures as well as for retrofitting the existing bui...
متن کاملThe Effect of Six Weeks of Endurance Training on Mitochondrial Level of OPA-1 Quadriceps in Streptozotocin-induced Diabetic Rats
Introduction: Mitochondrial dynamic disorders are attributed to many diseases such as diabetes. MFN2 and OPA-1 proteins are the main regulators of fusion, and DRP1 is the essential protein regulating mitochondrial fission. Increasing or decreasing the expression of relevant genes will cause an imbalance between these two processes. This study evaluated the effect of six weeks of aerobic trainin...
متن کاملAction of Mitochondrial Dnaase I in Destroying the Capacity of Isolated Cell Nuclei to Form Gels
1. DNA prepared from non-gelable rat liver nuclei isolated in the presence of disrupted mitochondria at pH 6.0, has been compared with DNA obtained from gelable nuclei isolated at pH 4.0. The DNA of the non-gelable nuclei is partially depolymerized relative to the DNA of the gelable nuclei. 2. It has been found that sufficiently small quantities of crystallized DNAase I can cleave a very large ...
متن کامل