Diversity of non-reducing polyketide synthase genes in the Pertusariales (lichenized Ascomycota): a phylogenetic perspective.
نویسندگان
چکیده
Lichenized fungi synthesize a great variety of secondary metabolites. These are typically crystalline compounds, which are deposited extracellularly on the fungal hyphae. While we know a lot about the chemical properties and structures of these substances, we have very little information on the molecular background of their biosynthesis. In the current study we analyze the diversity of non-reducing polyketide synthase (PKS) genes in members of the lichenized Pertusariales. This order primarily contains fully oxidized secondary metabolites from different substance classes, and is chemically and phylogenetically well studied. Using a degenerate primer approach with subsequent cloning we detected up to five non-reducing PKS sequences in a single PCR product. Eighty-five new KS sequence fragments were obtained for this study. Analysis of the 157 currently available fungal KS sequence fragments in a Bayesian phylogenetic framework revealed 18 highly supported clades that included only lichenized taxa, only non-lichenized taxa, or both. Some Pertusarialean groupings of PKS sequences corresponded partly to phylogenetic groupings based on ribosomal DNA. This is reasonable, because a correlation between well-supported phylogenetic lineages and the occurrence of secondary metabolites in the Pertusariales has been observed before. However, no clear linkage was found between the PKS genes analyzed and the ability to produce a particular secondary substance. Several PKS clades did not reveal obvious patterns of secondary compound distribution or phylogenetic association. Compared with earlier phylogenetic analyses of KS sequences the increased sampling in the current study allowed us to detect many new groupings within the fungal non-reducing PKSs.
منابع مشابه
Detection and Relation of Polyketide Synthase (PKSs) Genes With Antimicrobial Activity in Terrestrial Cyanobacteria of Lavasan
Background and Aims: Cyanobacteria are considered as favorable source for new pharmaceutical compounds. To date, the majority of bioactive metabolites isolated from cyanobacteria are either polyketides (PKSs) or non-ribosomal peptides. Despite of several worldwide studies on prevalence of PKSs, none of them included the terrestrial cyanobacteria of the Lavasan. Therefore, this study aimed to de...
متن کاملGenetic analysis of polyketide synthase and peptide synthase genes of cyanobacteria as a mining tool for new pharmaceutical compounds
Cyanobacteria are considered a promising source for new pharmaceutical lead compounds and a large number of chemically diverse and bioactive metabolites have been obtained from cyanobacteria. Despite of several worldwide studies on prevalence of NRPSs and PKSs among the cyanobacteria, none of them included Iranian cyanobacteria of Kermanshah province. Therefore, the aim of this study was t...
متن کاملPhylogenetic Study of Polyketide Synthases and Nonribosomal Peptide Synthetases Involved in the Biosynthesis of Mycotoxins
Polyketide synthase (PKSs) and nonribosomal peptide synthetase (NRPSs) are large multimodular enzymes involved in biosynthesis of polyketide and peptide toxins produced by fungi. Furthermore, hybrid enzymes, in which a reducing PKS region is fused to a single NRPS module, are also responsible of the synthesis of peptide-polyketide metabolites in fungi. The genes encoding for PKSs and NRPSs have...
متن کاملDiversity of the lichenized fungi in King George Island, Antarctica, revealed by phylogenetic analysis of partial large subunit rDNA sequences.
Lichens are predominant and important components of flora in the terrestrial ecosystem of Antarctica. However, relatively few researches on the phylogenetic position of Antarctic lichen-forming fungi have been accomplished. In this study, partial sequences of nuclear large subunit rDNAs from 50 Antarctic specimens were obtained and the phylogeny was reconstructed. Antarctic lichen species were ...
متن کاملInterkingdom Gene Transfer of a Hybrid NPS/PKS from Bacteria to Filamentous Ascomycota
Nonribosomal peptides (NRPs) and polyketides (PKs) are ecologically important secondary metabolites produced by bacteria and fungi using multidomain enzymes called nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), respectively. Previous phylogenetic analyses of fungal NRPSs and PKSs have suggested that a few of these genes were acquired by fungi via horizontal gene trans...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Phytochemistry
دوره 66 11 شماره
صفحات -
تاریخ انتشار 2005