Opposing unfolded-protein-response signals converge on death receptor 5 to control apoptosis.
نویسندگان
چکیده
Protein folding by the endoplasmic reticulum (ER) is physiologically critical; its disruption causes ER stress and augments disease. ER stress activates the unfolded protein response (UPR) to restore homeostasis. If stress persists, the UPR induces apoptotic cell death, but the mechanisms remain elusive. Here, we report that unmitigated ER stress promoted apoptosis through cell-autonomous, UPR-controlled activation of death receptor 5 (DR5). ER stressors induced DR5 transcription via the UPR mediator CHOP; however, the UPR sensor IRE1α transiently catalyzed DR5 mRNA decay, which allowed time for adaptation. Persistent ER stress built up intracellular DR5 protein, driving ligand-independent DR5 activation and apoptosis engagement via caspase-8. Thus, DR5 integrates opposing UPR signals to couple ER stress and apoptotic cell fate.
منابع مشابه
The Effect of Resistance Training and Berberine Chloride on the Apoptosis-Related Unfolded Protein Response Signaling Pathway in the Hippocampus of Diazinon-Poisoned Rats
Introduction: Diazinon is one of the most widely-used organophosphate pesticides in the world. This toxin enters the body in various ways and induces oxidative stress in various tissues. It has been proved that activation of unfolded protein response (UPR) under oxidative stress is a steady mechanism for maintaining cell function and survival. Therefore, the present study aimed to review the ef...
متن کاملAn initial phase of JNK activation inhibits cell death early in the endoplasmic reticulum stress response.
Accumulation of unfolded proteins in the endoplasmic reticulum (ER) activates the unfolded protein response (UPR). In mammalian cells, UPR signals generated by several ER-membrane-resident proteins, including the bifunctional protein kinase endoribonuclease IRE1α, control cell survival and the decision to execute apoptosis. Processing of XBP1 mRNA by the RNase domain of IRE1α promotes survival ...
متن کاملReceptor interacting protein 140 attenuates endoplasmic reticulum stress in neurons and protects against cell death
Inositol 1, 4, 5-trisphosphate receptor (IP3R)-mediated Ca(2+) release from the endoplasmic reticulum (ER) triggers many physiological responses in neurons, and when uncontrolled can cause ER stress that contributes to neurological disease. Here we show that the unfolded protein response (UPR) in neurons induces rapid translocation of nuclear receptor-interacting protein 140 (RIP140) to the cyt...
متن کاملPossible Involvement of a Specific Cell Surface Receptor for Calprotectin-Induced Apoptosis in Colon Adenocarcinoma and Carcinam Cell Lines (SW742 and HT29/219)
Calprotectin, a calcium-bound protein complex, is abundant in the cytosol of neutrophils. It has been reported that this protein has an apoptotic activity in tumor cells. Since calprotectin increases in colorectal cancer, this study was conducted to investigate, for the first time, the cytotoxicity/apoptotic effect of calprotectin on HT29/219 and SW742 colon carcinoma and adenocarcinoma cell li...
متن کاملGlucose Deprivation Induces ATF4-Mediated Apoptosis through TRAIL Death Receptors
Metabolic stress occurs frequently in tumors and in normal tissues undergoing transient ischemia. Nutrient deprivation triggers, among many potential cell death-inducing pathways, an endoplasmic reticulum (ER) stress response with the induction of the integrated stress response transcription factor ATF4. However, how this results in cell death remains unknown. Here we show that glucose deprivat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Science
دوره 345 6192 شماره
صفحات -
تاریخ انتشار 2014