Hierarchical Finite-State Modeling for Texture Segmentation with Application to Forest Classification
نویسندگان
چکیده
In this research report we present a new model for texture representation which is particularly well suited for image analysis and segmentation. Any image is first discretized and then a hierarchical finite-state region-based model is automatically coupled with the data by means of a sequential optimization scheme, namely the Texture Fragmentation and Reconstruction (TFR) algorithm. The TFR algorithm allows to model both intraand inter-texture interactions, and eventually addresses the segmentation task in a completely unsupervised manner. Moreover, it provides a hierarchical output, as the user may decide the scale at which the segmentation has to be given. Tests were carried out on both natural texture mosaics provided by the Prague Texture Segmentation Datagenerator Benchmark and remote-sensing data of forest areas provided by the French National Forest Inventory (IFN). Key-words: Texture segmentation, classification, co-occurrence matrix, structural models, Markov chain, texture synthesis, forest classification. This work was carried out during the tenure of an ERCIM fellowship (Scarpa’s postdoc). ∗ ERCIM Fellow hosted by UTIA/CRCIM Prague (CZ) and INRIA Sophia Antipolis (F). Now he is an Assistant Professor of the University “Federico II” of Naples (I). Email: [email protected] † Pattern Recognition Department, Institute of Information Theory and Automation of the Czech Academy of Sciences, Prague (CZ). Email: [email protected] in ria -0 01 18 42 0, v er si on 2 18 D ec 2 00 6 Modèle hiérarchique à états finis pour la segmentation de texture. Application à la classification de forêts Résumé : Dans ce rapport de recherche, nous proposons un nouveau modèle pour la représentation des textures qui est particulièrement bien adapté à l’analyse et à la segmentation des images. Chaque image est d’abord discrétisée. Ensuite, cette représentation discrète est automatiquement associée à un modèle hiérarchique à états finis fondé sur les régions, grâce à une optimisation séquentielle, via l’algorithme Texture Fragmentation and Reconstruction (TFR). Le TFR permet la modélisation soit des interactions intra-textures, soit des interactions entre textures différentes et donc il résout le problème de la segmentation de manière complètement non supervisée. En outre, il fournit une solution hiérarchique qui peut être interprétée à différentes échelles spatiales en fonction des besoins de l’utilisateur. Différents tests de l’algorithme ont été faits sur des images texturées fournies par le Prague Texture Segmentation Datagenerator Benchmark et sur des images de télédétection de forêts fournies par l’Inventaire Forestier National (IFN). Mots-clés : Segmentation de texture, classification, matrices de co-occurrence, modèle structural, chaîne de Markov, synthèse de texture, classification des forêts. in ria -0 01 18 42 0, v er si on 2 18 D ec 2 00 6 Hierarchical Finite-State Texture Modeling 3
منابع مشابه
Spectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms
Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...
متن کاملA Hierarchical Texture Model for Unsupervised Segmentation of Remotely Sensed Images
In this work a novel texture model particularly suited for unsupervised image segmentation is proposed. Any texture is represented at region level by means of a finite-state hierarchical model resulting from the superposition of several Markov chains, each associated with a different spatial direction. Corresponding to such a modeling, an optimization scheme, referred to as Texture Fragmentatio...
متن کاملObject-Based Classification of UltraCamD Imagery for Identification of Tree Species in the Mixed Planted Forest
This study is a contribution to assess the high resolution digital aerial imagery for semi-automatic analysis of tree species identification. To maximize the benefit of such data, the object-based classification was conducted in a mixed forest plantation. Two subsets of an UltraCam D image were geometrically corrected using aero-triangulation method. Some appropriate transformations were perfor...
متن کاملMonitoring Post Disturbance Forest Regeneration with Hierarchical Object-Based Image Analysis
The main goal of this exploratory project was to quantify seedling density in post fire regeneration sites, with the following objectives: to evaluate the application of second order image texture (SOIT) in image segmentation, and to apply the object-based image analysis (OBIA) approach to develop a hierarchical classification. With the utilization of image texture we successfully developed a m...
متن کاملRobust Method for E-Maximization and Hierarchical Clustering of Image Classification
We developed a new semi-supervised EM-like algorithm that is given the set of objects present in eachtraining image, but does not know which regions correspond to which objects. We have tested thealgorithm on a dataset of 860 hand-labeled color images using only color and texture features, and theresults show that our EM variant is able to break the symmetry in the initial solution. We compared...
متن کامل