Effects of matrix metalloproteinase-9 gene knock-out on morphological and motor outcomes after traumatic brain injury.

نویسندگان

  • X Wang
  • J Jung
  • M Asahi
  • W Chwang
  • L Russo
  • M A Moskowitz
  • C E Dixon
  • M E Fini
  • E H Lo
چکیده

Matrix metalloproteinases (MMPs) belong to a class of extracellular proteinases responsible for maintaining and remodeling the extracellular matrix. In addition to multiple functions in normal physiology, abnormal MMP expression and activity may also participate in the pathophysiology of cerebral disease. Here, we show that MMP-9 (gelatinase B; EC.3.4.24.35) contributes to the pathophysiology of traumatic brain injury. After controlled cortical impact in mice, MMP-9 was increased in traumatized brain. Total MMP-9 levels at 24 hr were significantly increased as measured by a substrate cleavage assay. Zymograms showed that MMP-9 was elevated as early as 3 hr after traumatic brain injury, reaching a maximum at approximately 24 hr. Increased MMP-9 levels persisted for up to 1 week. Western blot analysis indicated increased profiles of MMP-9 expression that corresponded with the zymographic data. Knock-out mice deficient in MMP-9 gene expression were compared with wild-type littermates in terms of morphological and motor outcomes after trauma. Motor outcomes were measured at 1, 2, and 7 d after traumatic brain injury by the use of a rotarod device. MMP-9 knock-out mice had less motor deficits than wild-type mice. At 7 d, traumatic brain lesion volumes on Nissl-stained histological sections were significantly smaller in MMP-9 knock-out mice. These data demonstrate that MMP-9 contributes to the pathophysiology of traumatic brain injury and suggest that interruption of the MMP proteolytic cascade may be a possible therapeutic approach for preventing the secondary progression of damage after brain trauma.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Nesfatin-1 on Permeability of Blood Brain Barrier, Neurological Score and Brain Edema after Traumatic Brain Injury in Male Rats: A Behavioral and Biochemical Study

Background and purpose: Traumatic brain injury (TBI) is one of the most complex diseases of the central nervous system (CNS). Nesfatin is an 82-amino acid effective polypeptide in CNS. In this study, we investigated the role of nesfatin in neuron protection in the process of diffuse concussion in rats and also its effect on the level of matrix metalloproteinase-9. Materials and methods: In thi...

متن کامل

Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia.

Deleterious processes of extracellular proteolysis may contribute to the progression of tissue damage after acute brain injury. We recently showed that matrix metalloproteinase-9 (MMP-9) knock-out mice were protected against ischemic and traumatic brain injury. In this study, we examined the mechanisms involved by focusing on relevant MMP-9 substrates in blood-brain barrier, matrix, and white m...

متن کامل

The Effects of Estrogen Receptors' Antagonist on Brain Edema, Intracranial Pressure and Neurological Outcomes after Traumatic Brain Injury in Rat

Background: In previous studies, the neuroprotective effect of 17&beta-estradiol in diffuse traumatic brain injury has been shown. This study used ICI 182,780, a non-selective estrogen receptor antagonist, to test the hypothesis that the neuroprotective effect of 17&beta-estradiol in traumatic brain injury is mediated by the estrogen receptors. Methods: The ovariectomized rats were divided into...

متن کامل

P80: The Effects of Progesterone Receptors\' Antagonist RU-486 on BrainEdema, Intracranial Pressure and Neurological Outcomes after Traumatic Brain Injury

In previous studies, the neuroprotective effect of progestrone in diffuse traumatic brain injury has been shown. This study used mifepristone (RU-486), a potent progesterone receptor antagonist, to evaluatethe hypothesis that the neuroprotective effect of progesterone in traumatic brain injury is mediated by the progesterone receptors. The ovariectomized rats were divided into 6 groups. Brain i...

متن کامل

The Effects of Shilajit on Brain Edema, Intracranial Pressure and Neurologic Outcomes following the Traumatic Brain Injury in Rat

  Objective(s): Brain edema is one of the most serious causes of death within the first few days after trauma brain injury (TBI). In this study we have investigated the role of Shilajit on brain edema, blood-brain barrier (BBB) permeability, intracranial pressure (ICP) and neurologic outcomes following brain trauma.   Materials and Methods: Diffuse traumatic brain trauma was indu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 20 18  شماره 

صفحات  -

تاریخ انتشار 2000