Dynamic collision-induced dissociation (DCID) in a quadrupole ion trap using a two-frequency excitation waveform: II. Effects of frequency spacing and scan rate.
نویسندگان
چکیده
Dynamic CID of selected precursor ions is achieved by the application of a two-frequency excitation waveform to the end-cap electrodes during the mass instability scan of a quadrupole ion trap (QIT) mass spectrometer. This new method permits a shorter scanning time when compared with conventional on-resonance CID. When the excitation waveform consists of two closely-spaced frequencies, the relative phase-relationship of the two frequencies plays a critical role in the fragmentation dynamics. However, at wider frequency spacings (>10 kHz), these phase effects are diminished, while maintaining the efficacy of closely-spaced excitation frequencies. The fragmentation efficiencies and energetics of n-butylbenzene and tetra-alanine are studied under different experimental conditions and the results are compared at various scan rate parameters between 0.1 and 1.0 ms/Th. Although faster scan rates reduce the analysis time, the maximum observed fragmentation efficiencies rarely exceed 30%, compared with values in excess of 50% achieved at slower scan rates. The internal energies calculated from the simulations of n-butylbenzene at fast scan rates are approximately 4 eV for most experimental conditions, while at slow scan rates, internal energies above 5.5 eV are observed for a wide range of conditions. Extensive ITSIM simulations support the observation that slowing the scan rate has a similar effect on fragmentation as widening the frequency spacing between the two excitation frequencies. Both approaches generally enhance CID efficiencies and make fragmentation less dependent upon the relative phase angle between the excitation waveform and the ion motion.
منابع مشابه
Dynamic collision-induced dissociation of peptides in a quadrupole ion trap mass spectrometer.
The fragmentation of natural peptides using dynamic collision-induced dissociation (DCID), a novel fragmentation method for quadrupole ion traps, is demonstrated. Using leucine enkephalin as a diagnostic molecule, the fragmentation efficiencies and energetics of DCID are compared with other methods of collisional activation in ion traps such as conventional on-resonance excitation and high-ampl...
متن کاملDynamic collision-induced dissociation (DCID) in a quadrupole ion trap using a two-frequency excitation waveform: I. Effects of excitation frequency and phase angle.
This study describes the application of a two-frequency excitation waveform to the end-cap electrodes of a quadrupole ion trap (QIT) during the mass acquisition period to deliberately fragment selected precursor ions. This approach obviates the need for a discrete excitation period and guarantees on-resonant excitation conditions without any requirement for resonant tuning; it is therefore fast...
متن کاملFast gas chromatography negative chemical ionization tandem mass spectrometry of explosive compounds using dynamic collision-induced dissociation
The analysis of nine explosive compounds by gas chromatography tandem mass spectrometry (GC–MS/MS) using negative chemical ionization (NCI) was performed under two different conditions: first, a conventional GC separation coupled with a standard ion dissociation method in a quadrupole ion trap (QIT) was performed in segmented selected reaction monitoring mode; second, a fast GC separation on a ...
متن کاملResonance excitation and dynamic collision-induced dissociation in quadrupole ion traps using higher-order excitation frequencies.
Fragmentation of the pentapeptide leucine enkephalin (YGGFL) is accomplished via higher-order resonances combined with simultaneous analysis of low-mass product ions. Two methods of achieving excitation are explored: (1) 0.5 ms resonant excitation at the omega and at Omega-omega secular frequencies of ion motion (where Omega is the radio-frequency (rf) drive frequency) in a manner similar to bo...
متن کاملEffects of fragile ions on mass resolution and on isolation for tandem mass spectrometry in the quadrupole ion trap mass spectrometer.
In the quadrupole ion trap, it has been noted that factors other than an ion's mass and charge may affect its measured m/z, resulting in compound-dependent, or "chemical", mass shifts. We propose that ions can exhibit a chemical mass shift because they are "fragile" and may fragment during the application of resonance ejection during mass analysis; these effects were studied using ions that inc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Society for Mass Spectrometry
دوره 18 11 شماره
صفحات -
تاریخ انتشار 2007