Hepatitis B virus polymerase disrupts K63-linked ubiquitination of STING to block innate cytosolic DNA-sensing pathways.
نویسندگان
چکیده
UNLABELLED The cellular innate immune system recognizing pathogen infection is essential for host defense against viruses. In parallel, viruses have developed a variety of strategies to evade the innate immunity. The hepatitis B virus (HBV), a DNA virus that causes chronic hepatitis, has been shown to inhibit RNA helicase RIG-I-mediated interferon (IFN) induction. However, it is still unknown whether HBV could affect the host DNA-sensing pathways. Here we report that in transiently HBV-transfected Huh7 cells, the stably HBV-producing cell line HepAD38, and HBV-infected HepaRG cells and primary human hepatocytes, HBV markedly interfered with IFN-β induction and antiviral immunity mediated by the stimulator of interferon genes (STING), which has been identified as a central factor in foreign DNA recognition and antiviral innate immunity. Screening analysis demonstrated that the viral polymerase (Pol), but not other HBV-encoded proteins, was able to inhibit STING-stimulated interferon regulatory factor 3 (IRF3) activation and IFN-β induction. Moreover, the reverse transcriptase (RT) and the RNase H (RH) domains of Pol were identified to be responsible for the inhibitory effects. Furthermore, Pol was shown to physically associate with STING and dramatically decrease the K63-linked polyubiquitination of STING via its RT domain without altering the expression level of STING. Taken together, these observations suggest that besides its inherent catalytic function, Pol has a role in suppression of IFN-β production by direct interaction with STING and subsequent disruption of its K63-linked ubiquitination, providing a new mechanism for HBV to counteract the innate DNA-sensing pathways. IMPORTANCE Although whether and how HBV infection induces the innate immune responses are still controversial, it has become increasingly clear that HBV has developed strategies to counteract the pattern recognition receptor-mediated signaling pathways. Previous studies have shown that type I IFN induction activated by the host RNA sensors could be inhibited by HBV. However, it remains unknown whether HBV as a DNA virus utilizes evasion mechanisms against foreign DNA-elicited antiviral signaling. In recent years, the cytosolic DNA sensor and key adaptor STING has been demonstrated to be essential in multiple foreign DNA-elicited innate immune signalings. Here, for the first time, we report STING as a new target of HBV to antagonize IFN induction and identify the viral polymerase responsible for the inhibitory effect, thus providing an additional molecular mechanism by which HBV evades the innate immunity; this implies that in addition to its inherent catalytic function, HBV polymerase is a multifunctional immunomodulatory protein.
منابع مشابه
TRIM30α Is a Negative-Feedback Regulator of the Intracellular DNA and DNA Virus-Triggered Response by Targeting STING
Uncontrolled immune responses to intracellular DNA have been shown to induce autoimmune diseases. Homeostasis regulation of immune responses to cytosolic DNA is critical for limiting the risk of autoimmunity and survival of the host. Here, we report that the E3 ubiquitin ligase tripartite motif protein 30α (TRIM30α) was induced by herpes simplex virus type 1 (HSV-1) infection in dendritic cells...
متن کاملMessage in a bottle: lessons learned from antagonism of STING signalling during RNA virus infection
STING has emerged in recent years as an important signalling adaptor in the activation of type I interferon responses during infection with DNA viruses and bacteria. An increasing body of evidence suggests that STING also modulates responses to RNA viruses, though the mechanisms remain less clear. In this review, we give a brief overview of the ways in which STING facilitates sensing of RNA vir...
متن کاملRIG-I-Mediated STING Upregulation Restricts Herpes Simplex Virus 1 Infection.
UNLABELLED STING has emerged in recent years as a key player in orchestrating innate immune responses to cytosolic DNA and RNA derived from pathogens. However, the regulation of STING still remains poorly defined. In the present study, we investigated the mechanism of the regulation of STING expression in relation to the RIG-I pathway. Our data show that signaling through RIG-I induces STING ex...
متن کاملVirulent poxviruses inhibit DNA sensing by preventing STING activation.
Cytosolic recognition of DNA has emerged as a critical cellular mechanism of host immune activation upon pathogen invasion. The central cytosolic DNA sensor cGAS activates STING, which is phosphorylated, dimerises and translocates from the ER to a perinuclear region to mediate IRF-3 activation. Poxviruses are dsDNA viruses replicating in the cytosol and hence likely to trigger cytosolic DNA sen...
متن کاملRIGulation of STING expression: at the crossroads of viral RNA and DNA sensing pathways
The innate immune sensing of pathogens is important for host to mount defensive responses. STING has emerged in recent years as a critical signaling adaptor in the immune response to cytosolic DNA and RNA derived from pathogens. Liu et al. (2016) demonstrate that the RIG-I-dependent RNA sensing signaling induces STING expression via a TNF-α and IFN-α synergy. The up-regulation of STING is vital...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 89 4 شماره
صفحات -
تاریخ انتشار 2015