The alpha isoform of protein kinase CKI is responsible for hepatitis C virus NS5A hyperphosphorylation.
نویسندگان
چکیده
Hepatitis C virus (HCV) has been the subject of intensive studies for nearly two decades. Nevertheless, some aspects of the virus life cycle are still a mystery. The HCV nonstructural protein 5A (NS5A) has been shown to be a modulator of cellular processes possibly required for the establishment of viral persistence. NS5A is heavily phosphorylated, and a switch between a basally phosphorylated form of NS5A (p56) and a hyperphosphorylated form of NS5A (p58) seems to play a pivotal role in regulating HCV replication. Using kinase inhibitors that specifically inhibit the formation of NS5A-p58 in cells, we identified the CKI kinase family as a target. NS5A-p58 increased upon overexpression of CKI-alpha, CKI-delta, and CKI-epsilon, whereas the RNA interference of only CKI-alpha reduced NS5A hyperphosphorylation. Rescue of inhibition of NS5A-p58 was achieved by CKI-alpha overexpression, and we demonstrated that the CKI-alpha isoform is targeted by NS5A hyperphosphorylation inhibitors in living cells. Finally, we showed that down-regulation of CKI-alpha attenuates HCV RNA replication.
منابع مشابه
Modulation of hepatitis C virus NS5A hyperphosphorylation by nonstructural proteins NS3, NS4A, and NS4B.
NS5A of the hepatitis C virus (HCV) is a highly phosphorylated protein involved in resistance against interferon and required most likely for replication of the viral genome. Phosphorylation of this protein is mediated by a cellular kinase(s) generating multiple proteins with different electrophoretic mobilities. In the case of the genotype 1b isolate HCV-J, in addition to the basal phosphoryla...
متن کاملA link between translation of the hepatitis C virus polyprotein and polymerase function; possible consequences for hyperphosphorylation of NS5A.
Hyperphosphorylation of NS5A is thought to play a key role in controlling hepatitis C virus (HCV) RNA replication. Using a tetracycline-regulable baculovirus delivery system to introduce non-culture-adapted HCV replicons into HepG2 cells, we found that a point mutation in the active site of the viral polymerase, NS5B, led to an increase in NS5A hyperphosphorylation. Although replicon transcript...
متن کاملPhosphorylation of nonstructural 5A protein of hepatitis C virus: HCV group-specific hyperphosphorylation.
We previously showed that two proteins with molecular weights of 56 and 58 kDa are produced from nonstructural protein 5A (NS5A) derived from hepatitis C virus (HCV)-1b genotype. The 56-kDa protein is phosphorylated at serine residues in NS5A, including those located in the C-terminal region of NS5A, while the 58-kDa protein, the hyperphosphorylated form of the 56-kDa protein, is phosphorylated...
متن کاملPhosphorylation of hepatitis C virus-encoded nonstructural protein NS5A.
Two proteins, a 56-kDa protein (p56) and a 58-kDa protein (p58), are produced from the hepatitis C virus (HCV) nonstructural region 5A (NS5A). Recently, we found that both proteins are phosphorylated at serine residues and that p58 is a hyperphosphorylated form of p56. Furthermore, hyper-phosphorylation depends on the production of an intact form of the HCV NS4A protein. To clarify the nature o...
متن کاملActivation of ribosomal RNA transcription by hepatitis C virus involves upstream binding factor phosphorylation via induction of cyclin D1.
Hepatitis C virus (HCV) causes chronic infection in humans leading to liver cirrhosis and hepatocellular carcinoma. rRNA transcription, catalyzed by RNA polymerase I (Pol I), plays a critical role in ribosome biogenesis, and changes in Pol I transcription rate are associated with profound alterations in the growth rate of the cell. Because rRNA synthesis is intimately linked to cell growth and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 80 22 شماره
صفحات -
تاریخ انتشار 2006