Mechanomyography and Torque during FES-Evoked Muscle Contractions to Fatigue in Individuals with Spinal Cord Injury
نویسندگان
چکیده
A mechanomyography muscle contraction (MC) sensor, affixed to the skin surface, was used to quantify muscle tension during repetitive functional electrical stimulation (FES)-evoked isometric rectus femoris contractions to fatigue in individuals with spinal cord injury (SCI). Nine persons with motor complete SCI were seated on a commercial muscle dynamometer that quantified peak torque and average torque outputs, while measurements from the MC sensor were simultaneously recorded. MC-sensor-predicted measures of dynamometer torques, including the signal peak (SP) and signal average (SA), were highly associated with isometric knee extension peak torque (SP: r = 0.91, p < 0.0001), and average torque (SA: r = 0.89, p < 0.0001), respectively. Bland-Altman (BA) analyses with Lin's concordance (ρC) revealed good association between MC-sensor-predicted peak muscle torques (SP; ρC = 0.91) and average muscle torques (SA; ρC = 0.89) with the equivalent dynamometer measures, over a range of FES current amplitudes. The relationship of dynamometer torques and predicted MC torques during repetitive FES-evoked muscle contraction to fatigue were moderately associated (SP: r = 0.80, p < 0.0001; SA: r = 0.77; p < 0.0001), with BA associations between the two devices fair-moderate (SP; ρC = 0.70: SA; ρC = 0.30). These findings demonstrated that a skin-surface muscle mechanomyography sensor was an accurate proxy for electrically-evoked muscle contraction torques when directly measured during isometric dynamometry in individuals with SCI. The novel application of the MC sensor during FES-evoked muscle contractions suggested its possible application for real-world tasks (e.g., prolonged sit-to-stand, stepping,) where muscle forces during fatiguing activities cannot be directly measured.
منابع مشابه
Evoked EMG versus Muscle Torque during Fatiguing Functional Electrical Stimulation-Evoked Muscle Contractions and Short-Term Recovery in Individuals with Spinal Cord Injury
This study investigated whether the relationship between muscle torque and m-waves remained constant after short recovery periods, between repeated intervals of isometric muscle contractions induced by functional electrical stimulation (FES). Eight subjects with spinal cord injury (SCI) were recruited for the study. All subjects had their quadriceps muscles group stimulated during three session...
متن کاملThe Effectiveness of FES-Evoked EMG Potentials to Assess Muscle Force and Fatigue in Individuals with Spinal Cord Injury
The evoked electromyographic signal (eEMG) potential is the standard index used to monitor both electrical changes within the motor unit during muscular activity and the electrical patterns during evoked contraction. However, technical and physiological limitations often preclude the acquisition and analysis of the signal especially during functional electrical stimulation (FES)-evoked contract...
متن کاملThe effect of fatigue on the timing of electrical stimulation-evoked muscle contractions in people with spinal cord injury.
This study investigated the activation dynamics of electrical stimulation-evoked muscle contractions performed by individuals with spinal cord injury (SCI). The purpose was to determine whether electrical stimulation (ES) firing patterns during cycling exercise should be altered in response to fatigue-induced changes in the time taken for force to rise and fall with ES. Seven individuals with S...
متن کاملCorrelation between spectral and temporal mechanomyography features during functional electrical stimulation
Introduction: Signal analysis involves time and/or frequency domains, and correlations are described in the literature for voluntary contractions. However, there are few studies about those correlations using mechanomyography (MMG) response during functional electrical stimulation (FES) elicited contractions in spinal cord injured subjects. This study aimed to determine the correlation between ...
متن کاملH-reflexes reduce fatigue of evoked contractions after spinal cord injury.
INTRODUCTION Neuromuscular electrical stimulation (NMES) over a muscle belly (mNMES) generates contractions predominantly through M-waves, while NMES over a nerve trunk (nNMES) can generate contractions through H-reflexes in people who are neurologically intact. We tested whether the differences between mNMES and nNMES are present in people with chronic motor-complete spinal cord injury and, if...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 17 شماره
صفحات -
تاریخ انتشار 2017