Block Copolymer-Mediated Formation of Superparamagnetic Nanocomposites
نویسندگان
چکیده
Well-defined diblock copolymers of bicyclo[2.2.1]hept-5-ene-2-carboxylic acid oxiranylmethyl ester, having both anchoring and steric stabilizing blocks in a 1:1 ratio, have been prepared by ringopening metathesis polymerization (ROMP). The epoxy-containing block copolymer stabilized in situ generated iron oxide (γ-Fe2O3) nanoparticles. The epoxy ester group provided strong chelation between the iron-oxide nanoparticle and the polymeric siderophores, producing a stable magnetic nanocomposite. The polymers were characterized by H NMR, GPC, TGA, and DSC. The morphology and crystalline structure of the maghemite-block copolymer nanocomposites were evaluated with TEM and XRD, revealing highly crystalline, monodisperse γ-Fe2O3 nanoparticles with an average size of 3-5 nm. Interactions between the maghemite nanoparticles and the polymer were observed by FTIR. SQUID magnetometric analysis of the nanocomposites demonstrated superparamagnetism at room temperature with high saturation magnetization.
منابع مشابه
A facile approach to fabricate functionalized superparamagnetic copolymer-silica nanocomposite spheres.
Novel amino- or thiol-functionalized superparamagnetic copolymer-silica nanospheres (NH2-SMCSNs/SH-SMCSNs), which consist of a magnetic core and a silica cross-linked block copolymer shell, have been fabricated.
متن کاملMagneto-dielectric properties of polymer– Fe3O4 nanocomposites
The aim of this research is to elucidate the size effect of magnetic nanoparticles on the resultant magneto-dielectric properties of polymer nanocomposites at radio frequencies. The block copolymer of [styrene-b-ethylene/butylene-b-styrene] (SEBS) was utilized as a matrix for the templating of magnetic nanoparticles. Surfactant-modified iron oxide (Fe3O4) nanoparticles of various sizes were suc...
متن کاملDesign, Optimization Process and Efficient Analysis for Preparation of Copolymer-Coated Superparamagnetic Nanoparticles
Magnetic nanoparticles (MNPs) are very important systems with potential use in drug delivery systems, ferrofluids, and effluent treatment. In many situations, such as in biomedical applications, it is necessary to cover inorganic magnetic particles with an organic material, such as polymers. A superparamagnetic nanocomposite Fe3O4/poly(maleic anhydride-co-acrylic acid) P(MAH-co-AA) with a core/...
متن کاملPoly(vinylidene fluoride)/nickel nanocomposites from semicrystalline block copolymer precursors.
The fabrication of nanoporous poly(vinylidene fluoride) (PVDF) and PVDF/nickel nanocomposites from semicrystalline block copolymer precursors is reported. Polystyrene-block-poly(vinylidene fluoride)-block-polystyrene (PS-b-PVDF-b-PS) is prepared through functional benzoyl peroxide initiated polymerization of VDF, followed by atom transfer radical polymerization (ATRP) of styrene. The crystalliz...
متن کاملSuperparamagnetic iron oxide nanoparticles stabilized by a poly(amidoamine)-rhenium complex as potential theranostic probe.
Three-component nanocomposites, constituted by a superparamagnetic iron oxide core coated with a polymeric surfactant bearing tightly bound Re(CO)3 moieties, were prepared and fully characterized. The water soluble and biocompatible surfactant was a linear poly(amidoamine) copolymer (PAA), containing cysteamine pendants in the minority part (ISA23SH), able to coordinate Re(CO)3 fragments. For t...
متن کامل