On the Complexity of the Set of Unconditional Convex Bodies

نویسنده

  • Mark Rudelson
چکیده

We show that for any 1 ≤ t ≤ c̃n log−5/2 n, the set of unconditional convex bodies in R contains a t-separated subset of cardinality at least exp ( exp ( c t2 log(1 + t) n )) . This implies the existence of an unconditional convex body in R which cannot be approximated within the distance d by a projection of a polytope with N faces unless N ≥ exp(c(d)n). We also show that for t ≥ 2, the cardinality of a t-separated set of completely symmetric bodies in R does not exceed exp ( exp ( C log n log t )) .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sweep Line Algorithm for Convex Hull Revisited

Convex hull of some given points is the intersection of all convex sets containing them. It is used as primary structure in many other problems in computational geometry and other areas like image processing, model identification, geographical data systems, and triangular computation of a set of points and so on. Computing the convex hull of a set of point is one of the most fundamental and imp...

متن کامل

The Hadwiger Conjecture for Unconditional Convex Bodies

We investigate the famous Hadwiger Conjecture, focusing on unconditional convex bodies. We establish some facts about covering with homotethic copies for Lp balls, and prove a property of outer normals to unconditional bodies. We also use a projection method to prove a relation between the bounded and unbounded versions of the conjecture. 1 Definitions and Background Definition 1. A convex body...

متن کامل

On the hyperplane conjecture for random convex sets

This seemingly innocuous question, considered two decades ago by Bourgain [3, 4], has not been answered yet. We refer the reader to, e.g., [2], [18] or [14] for partial results, history and for additional literature regarding this hyperplane conjecture. In particular, there are large classes of convex bodies for which an affirmative answer to the above question is known. These include unconditi...

متن کامل

An efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems

Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...

متن کامل

The convex domination subdivision number of a graph

Let $G=(V,E)$ be a simple graph. A set $Dsubseteq V$ is adominating set of $G$ if every vertex in $Vsetminus D$ has atleast one neighbor in $D$. The distance $d_G(u,v)$ between twovertices $u$ and $v$ is the length of a shortest $(u,v)$-path in$G$. An $(u,v)$-path of length $d_G(u,v)$ is called an$(u,v)$-geodesic. A set $Xsubseteq V$ is convex in $G$ ifvertices from all $(a, b)$-geodesics belon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete & Computational Geometry

دوره 55  شماره 

صفحات  -

تاریخ انتشار 2016