Nonradiative recombination--critical in choosing quantum well number for InGaN/GaN light-emitting diodes.

نویسندگان

  • Yi Ping Zhang
  • Zi-Hui Zhang
  • Wei Liu
  • Swee Tiam Tan
  • Zhen Gang Ju
  • Xue Liang Zhang
  • Yun Ji
  • Lian Cheng Wang
  • Zabu Kyaw
  • Namig Hasanov
  • Bin Bin Zhu
  • Shun Peng Lu
  • Xiao Wei Sun
  • Hilmi Volkan Demir
چکیده

In this work, InGaN/GaN light-emitting diodes (LEDs) possessing varied quantum well (QW) numbers were systematically investigated both numerically and experimentally. The numerical computations show that with the increased QW number, a reduced electron leakage can be achieved and hence the efficiency droop can be reduced when a constant Shockley-Read-Hall (SRH) nonradiative recombination lifetime is used for all the samples. However, the experimental results indicate that, though the efficiency droop is suppressed, the LED optical power is first improved and then degraded with the increasing QW number. The analysis of the measured external quantum efficiency (EQE) with the increasing current revealed that an increasingly dominant SRH nonradiative recombination is induced with more epitaxial QWs, which can be related to the defect generation due to the strain relaxation, especially when the effective thickness exceeds the critical thickness. These observations were further supported by the carrier lifetime measurement using a pico-second time-resolved photoluminescence (TRPL) system, which allowed for a revised numerical modeling with the different SRH lifetimes considered. This work provides useful guidelines on choosing the critical QW number when designing LED structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlling electron overflow in phosphor-free InGaN/GaN nanowire white light-emitting diodes.

We have investigated for the first time the impact of electron overflow on the performance of nanowire light-emitting diodes (LEDs) operating in the entire visible spectral range, wherein intrinsic white light emission is achieved from self-organized InGaN quantum dots embedded in defect-free GaN nanowires on a single chip. Through detailed temperature-dependent electroluminescence and simulati...

متن کامل

Effects of Luminescence Efficiency in InGaN-GaN LEDs by Inserting a LT-GaN Underlying Layer to Separate Nonradiative Recombination Centers

We have investigated the effects of nonradiative recombination centers (NRCs) on the device performances of InGaN/GaN multi-quantum-well (MQW) light-emitting diodes (LEDs) incorporating low-temperature n-GaN (LT-GaN) underlying layers. Inserting an LT-GaN underlying layer prior to growing the MQWs is a successful means of separating the induced NRCs as a result of the presence of a growth inter...

متن کامل

Critical role of CdSe nanoplatelets in color-converting CdSe/ZnS nanocrystals for InGaN/GaN light-emitting diodes.

Here we report CdSe nanoplatelets that are incorporated into color-converting CdSe/ZnS nanocrystals for InGaN/GaN light-emitting diodes. The critical role of CdSe nanoplatelets as an exciton donor for the color conversion was experimentally investigated. The power conversion efficiency of the hybrid light-emitting diode was found to increase by 23% with the incorporation of the CdSe nanoplatele...

متن کامل

Investigation of radiative tunneling in GaN/InGaN single quantum well light-emitting diodes

The mechanisms of carrier injection and recombination in a GaN/InGaN single quantum well light-emitting diodes have been studied. Strong defect-assisted tunneling behavior has been observed in both forward and reverse current– voltage characteristics. In addition to band-edge emission at 400 nm, the electroluminescence has also been attributed to radiative tunneling from band-to-deep level stat...

متن کامل

Effects of In profile on simulations of InGaN/GaN multi-quantum-well light-emitting diodes

Articles you may be interested in Effect of V-defects on the performance deterioration of InGaN/GaN multiple-quantum-well light-emitting diodes with varying barrier layer thickness Three dimensional numerical study on the efficiency of a core-shell InGaN/GaN multiple quantum well nanowire light-emitting diodes Effect of an electron blocking layer on the piezoelectric field in InGaN/GaN multiple...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 23 3  شماره 

صفحات  -

تاریخ انتشار 2015