(HIC-SECM) as a new local dissolution kinetic probe: application to salicylic acid dissolution in aqueous solution
نویسندگان
چکیده
Dissolution kinetics of the (110) face of salicylic acid in aqueous solution is determined by hopping intermittent contact scanning electrochemical microscopy (HIC-SECM) using a 2.5 μm diameter platinum ultramicroelectrode (UME). The method operates by translating the probe UME towards the surface at a series of positions across the crystal and inducing dissolutio n via the reduction of protons to hydrogen, which titrates the weak acid and promotes the dissolution reaction, but only when the UME is close to the crystal. Most importantly, as dissolution is only briefly and transiently induced at each location, the initial dissolution kinetics of an as-grown single crystal surface can be measured, rather than a surface which has undergone significant dissolution (pitting), as in other techniques. Mass transport and kinetics in the system are modelled using finite element method simulations which allows dissolution rate constants to be evaluated. It is found that the kinetics of an ‘asgrown’ crystal are much slower than for a surface that has undergone partial bulk dissolution (mimicking conventional techniques), which can be attributed to a dramatic change in surface morphology as identified by atomic force microscopy (AFM). The ‘as-grown’ (110) surface presents extended terrace structures to the solution which evidently dissolve slowly, whereas a partially dissolved surface has extensive etch features and step sites which greatly enhance dissolution kinetics. This means that crystals such as salicylic acid will show time-dependent dissolution kinetics (fluxes) that are strongly dependent on crystal history, and this needs to be taken into account to fully understand dissolution.
منابع مشابه
Hopping intermittent contact - scanning electrochemical microscopy ( HIC - SECM ) as a new local dissolution kinetic probe : application to salicylic acid dissolution in aqueous solution
(2015) Hopping intermittent contact-scanning electrochemical microscopy (HIC-SECM) as a new local dissolution kinetic probe : application to salicylic acid dissolution in aqueous solution. CrystEngComm, 17. pp. 7835-7843. Copyright and reuse: The Warwick Research Archive Portal (WRAP) makes this work of researchers of the University of Warwick available open access under the following condition...
متن کاملDissolution Kinetic Evaluation of Manganese-rich Iron ore by Sulphuric acid Solution
This study investigated the optimum conditions for the leaching of manganese-rich iron ore for subsequent beneficiation studies in laboratory scale. The experiments were carried out by varying the concentration of H2 SO4 solution and the leaching temperature. The properties of the iron ore was characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM)...
متن کاملIn-Situ Imaging of Ionic Crystal Dissolution Using an Integrated Electrochemical/AFM Probe
The kinetics and mechanism controlling dissolution from the (100) cleavage face of potassium bromide single crystals in acetonitrile solutions have been identified using a novel integrated electrochemical/AFM probe and a scanning electrochemical microscope (SECM). With both techniques, dissolution is induced by perturbing the dynamic dissolution/growth equilibrium at the crystal/solution interf...
متن کاملKinetics of Sphalerite Leaching by Sodium Nitrate in Sulfuric Acid
In the present work, the extraction of zinc from a sphalerite concentrate using sodium nitrate as an oxidant in a sulfuric acid solution was investigated. The effective parameters such as the temperature, sulfuric acid and sodium nitrite concentrations, stirring speed, particle size, and solid/liquid (S/L) ratio were analyzed. The dissolution rate increased with increase in the sulfuric acid an...
متن کاملRole of Calcium Content in Dissolution Kinetics of Iranian Borate Minerals in Sulfuric Acid
The dissolution kinetics of pandermite and hydroboracite, present in an Iranian borate ore, in sulfuric acid has been comparatively studied. The effect of particle size, temperature, and acid concentration on their dissolution rate was investigated. Dissolution rates of both minerals increased by reducing the particle size and by raising the temperature. Although, an increase in the acid concen...
متن کامل