Development of multi-pitch tool path in computer-controlled optical surfacing processes

نویسندگان

  • Jing Hou
  • Defeng Liao
  • Hongxiang Wang
چکیده

Background: Tool path in computer-controlled optical surfacing (CCOS) processes has a great effect on middle spatial frequency error in terms of residual ripples. Raster tool path of uniform path pitch is one of the mostly adopted paths, in which smaller path pitch is always desired for restraining residual ripple errors. However, too dense paths cause excessive material removal in lower removal regions deteriorating the form convergence. Methods: With this in view, we propose a novel tool path planning method named multi-pitch path. With the path, the material removal map is divided into several regions with varied path pitches according to the desired removal depth in each region. The path pitch is designed larger at low removal regions while smaller at high removal regions, and the feeding velocity of the tool is maintained at high level when scanning the whole surface. Results and conclusions: Experiments were conducted to demonstrate this novel tool path planning method, and the results indicate that it can successfully restrain the residual ripples, and meanwhile guarantee favorable convergent rate of form error.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-sequential optimization technique for a computer controlled optical surfacing process using multiple tool influence functions.

Optical surfaces can be accurately figured by computer controlled optical surfacing (CCOS) that uses well characterized sub-diameter polishing tools driven by numerically controlled (NC) machines. The motion of the polishing tool is optimized to vary the dwell time of the polisher on the workpiece according to the desired removal and the calibrated tool influence function (TIF). Operating CCOS ...

متن کامل

Modelling and simulation of mid-spatial-frequency error generation in CCOS

Background: The computer-controlled optical surfacing (CCOS) technology, which has advantages of high certainty and high convergence rate for surface error correction, has been widely applied in the manufacture of large-aperture optical elements. However, due to the convolution effect, the mid-spatial-frequency (MSF) errors are difficult to be restrained in CCOS. Methods: Consequently, this pap...

متن کامل

Edge control in a computer controlled optical surfacing process using a heterocercal tool influence function.

Edge effect is regarded as one of the most difficult technical issues in a computer controlled optical surfacing (CCOS) process. Traditional opticians have to even up the consequences of the two following cases. Operating CCOS in a large overhang condition affects the accuracy of material removal, while in a small overhang condition, it achieves a more accurate performance, but leaves a narrow ...

متن کامل

MEASURING SOFTWARE PROCESSES PERFORMANCE BASED ON FUZZY MULTI AGENT MEASUREMENTS

The present article discusses and presents a new and comprehensive approachaimed at measuring the maturity and quality of software processes. This method has beendesigned on the basis of the Software Capability Maturity Model (SW-CMM) and theMulti-level Fuzzy Inference Model and is used as a measurement and analysis tool. Among themost important characteristics of this method one can mention si...

متن کامل

Modelling Dispersion Characteristics of Circular Optical Waveguide with Helical Winding– Comparison for Different Pitch Angles

In this Article dispersion characteristic of conventional optical waveguide with helical winding at core – cladding interface has been obtained. The model dispersion characteristics of optical waveguide with helical winding at core-cladding interface have been obtained for five different pitch angles. This paper includes dispersion characteristics of optical waveguide with helical winding, and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017