Nonlinear optical phenomena on rough surfaces of metal thin films

نویسندگان

  • Evgeni Y. Poliakov
  • Vadim A. Markel
  • Vladimir M. Shalaev
  • Robert Botet
چکیده

Nonlinear optical phenomena on rough self-affine metal surfaces are theoretically studied. Placing nonlinearly polarizable molecules on such surfaces results in strong enhancement of optical nonlinearities. A quasistatic approximation is used to calculate local-enhancement factors for the second and third harmonic generation, degenerate four-wave mixing, and nonlinear Kerr effect. The calculations show that the average enhancement factors on a self-affine surface can be as large as 10 and 10 for optical nonlinearities of the second and third order, respectively, with the maximum average enhancement in the infrared spectral range. Strong spatial inhomogeneity of local-enhancement distribution is demonstrated for the second and third harmonic generation. The local enhancement can exceed the average by several orders of magnitude, reaching extremely high values. Sharp peaks in local-field intensities at fundamental and generated frequencies are localized in spatially separated nanometer-sized areas of the film. @S0163-1829~98!01124-2#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effects Of Interfacial Roughness On The Argon Ion Implanted Tantalum Films

In the present study, effect of interfacial roughness on the ion implanted Tantalum based surfaces has been investigated. The argon ions with energy of 30 keV and in doses of 1×1017 , 3×1017 , 5×1017 , 7×1017 , and 10×1017  (ion/cm2) have been used at ambient temperature. The Atomic Force Microscopy (AFM), analysis have been used to study and characterize the surfaces morphology. The effect of ...

متن کامل

Ultra-smooth metal surfaces generated by pressure-induced surface deformation of thin metal films

We present a mechanical pressing technique for generating ultra-smooth surfaces on thin metal films by flattening the bumps, asperities, rough grains and spikes of a freshly vacuum deposited metal film. The method was implemented by varying the applied pressure from 100 MPa to 600 MPa on an e-beam evaporated silver film of thickness 1000 Å deposited on double-polished (100)-oriented silicon sur...

متن کامل

Ultraviolet detectors based on annealed zinc oxide thin films: epitaxial growth and physical characterizations

In this report, ultraviolet (UV) detectors were fabricated based on zinc oxide thin films. The epitaxial growth of zinc oxide thin films was carried out on bare glass substrate with preferred orientation to (002) plane of wurtzite structure through radio frequency sputtering technique. The structural properties indicated a dominant peak at 2θ=34.28º which was matched with JCPDS reference card N...

متن کامل

Study of Photo-Conductivity in MoS2 Thin Films Grown in Low-Temperature Aqueous Solution Bath

An experimental study over the optical response of thin MoS2 films grownby chemical bath deposition (CBD) method is presented. As two important factors, theeffect of bath temperature and growth time are considered on the photocurrentgeneration in the grown samples. The results show that increasing the growth time leadsto better optical response and higher difference betw...

متن کامل

The effect of sputtering RF power on structural, optical and electrical properties of CuO and CuO2 thin films

In this paper, the RF power change effect on the structural, optical and electrical properties of CuO thin films prepared by RF reactive magnetron sputtering deposited on glass substrates are studied. At first, the thin films are prepared at 150, 280, 310 and 340W respectively. Then, the films are characterized by XRD, AFM, Uv-visible and four-point probe analysis respectively. The results show...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998