Graph-Community Detection for Cross-Document Topic Segment Relationship Identification
نویسندگان
چکیده
In this paper we propose a graph-community detection approach to identify cross-document relationships at the topic segment level. Given a set of related documents, we automatically find these relationships by clustering segments with similar content (topics). In this context, we study how different weighting mechanisms influence the discovery of word communities that relate to the different topics found in the documents. Finally, we test different mapping functions to assign topic segments to word communities, determining which topic segments are considered equivalent. By performing this task it is possible to enable efficient multi-document browsing, since when a user finds relevant content in one document we can provide access to similar topics in other documents. We deploy our approach in two different scenarios. One is an educational scenario where equivalence relationships between learning materials need to be found. The other consists of a series of dialogs in a social context where students discuss commonplace topics. Results show that our proposed approach better discovered equivalence relationships in learning material documents and obtained close results in the social speech domain, where the best performing approach was a clustering technique.
منابع مشابه
Topic Identification
In this chapter we discuss the problem of identifying the underlying topics beings discussed in spoken audio recordings. We focus primarily on the issues related to supervised topic classification or detection tasks using labeled training data, but we also discuss approaches for other related tasks including novel topic detection and unsupervised topic clustering. The chapter provides an overvi...
متن کاملA New Document Embedding Method for News Classification
Abstract- Text classification is one of the main tasks of natural language processing (NLP). In this task, documents are classified into pre-defined categories. There is lots of news spreading on the web. A text classifier can categorize news automatically and this facilitates and accelerates access to the news. The first step in text classification is to represent documents in a suitable way t...
متن کاملGraph-based Visual Saliency Model using Background Color
Visual saliency is a cognitive psychology concept that makes some stimuli of a scene stand out relative to their neighbors and attract our attention. Computing visual saliency is a topic of recent interest. Here, we propose a graph-based method for saliency detection, which contains three stages: pre-processing, initial saliency detection and final saliency detection. The initial saliency map i...
متن کاملSemantic-based topic detection using Markov decision processes
In the field of text mining, topic modeling and detection are fundamental problems in public opinion monitoring, information retrieval, social media analysis, and other activities. Document clustering has been used for topic detection at the document level. Probabilistic topic models treat topics as a distribution over the term space, but this approach overlooks the semantic information hidden ...
متن کاملAn Optimized Firefly Algorithm based on Cellular Learning Automata for Community Detection in Social Networks
The structure of the community is one of the important features of social networks. A community is a sub graph which nodes have a lot of connections to nodes of inside the community and have very few connections to nodes of outside the community. The objective of community detection is to separate groups or communities that are linked more closely. In fact, community detection is the clustering...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1606.04081 شماره
صفحات -
تاریخ انتشار 2016