Hybrid projective synchronization and control of the Baier-Sahle hyperchaotic flow in arbitrary dimensions with unknown parameters

نویسندگان

  • Hassan Saberi Nik
  • Jafar Saberi-Nadjafi
  • Sohrab Effati
  • Robert A. Van Gorder
چکیده

The problem of hybrid projective synchronization (HPS) strategies and control for the Baier–Sahle hyperchaotic flow in arbitrary dimensions with unknown parameters is considered. Based on the Lasalle invariance principle and adaptive control method, adaptive controllers and parameters update laws are given for the HPS between two identical hyper-chaotic systems with fully unknown parameters. Using this method, the Baier–Sahle hyperchaotic flow in arbitrary dimensions is controlled to the unsteady equilibrium points. The Baier–Sahle hyperchaotic flow is a useful choice for this analysis, since it is a standard model of hyperchaos, yet it is simple enough to be analytically tractable. In particular, the Baier–Sahle hyperchaotic flow has been proposed as an N dimensional nonlinear system model giving the maximal number of positive Lyapunov exponents (N 2). Both a rigorous theoretical analysis and direct numerical simulations are provided to demonstrate the control of hyperchaos in this model. The results suggest that the methods used here can be applied to more complicated models from which hyperchaos arises. 2014 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Projective Synchronization of a New Hyperchaotic System

Abstract. This paper investigates the modified projective synchronization (MPS) of a new hyperchaotic system. The different nonlinear feedback controllers are designed by an active control method for synchronization of two hyperchaotic systems with the same or different structures. In addition, the MPS of the new hyperchaotic system with unknown parameters including the unknown coefficients of ...

متن کامل

Adaptive Modified Function Projective Synchronization between Two Different Hyperchaotic Dynamical Systems

This work investigates modified function projective synchronization between two different hyperchaotic dynamical systems, namely, hyperchaotic Lorenz system and hyperchaotic Chen system with fully unknown parameters. Based on Lyapunov stability theory, the adaptive control law and the parameter update law are derived to achieve modified function projective synchronized between two diffierent hy...

متن کامل

Hybrid Adaptive Synchronization of Hyperchaotic Systems with Fully Unknown Parameters

In this paper, an adaptive control scheme is developed to study the hybrid synchronization behavior between two identical and different hyperchaotic systems with unknown parameters. This adaptive hybrid synchronization controller is designed based on Lyapunov stability theory and an analytic expression of the controller with its adaptive laws of parameters is shown. The adaptive hybrid synchron...

متن کامل

Adaptive Hybrid Function Projective Synchronization of Chaotic Systems with Time-Varying Parameters

The adaptive hybrid function projective synchronization AHFPS of different chaotic systems with unknown time-varying parameters is investigated. Based on the Lyapunov stability theory and adaptive bounding technique, the robust adaptive control law and the parameters update law are derived to make the states of two different chaotic systems asymptotically synchronized. In the control strategy, ...

متن کامل

Anti-Synchronization of Complex Chaotic T-System Via Optimal Adaptive Sliding-Mode and Its Application In Secure Communication

In this paper, an optimal adaptive sliding mode controller is proposed for anti-synchronization of two identical hyperchaotic systems. We use hyperchaotic complex T-system for master and slave systems with unknown parameters in the slave system. To construct the optimal adaptive sliding mode controller, first a simple sliding surface is designed. Then, the optimal adaptive sliding mode controll...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 248  شماره 

صفحات  -

تاریخ انتشار 2014