Targeted gene transfer increases contractility and decreases oxygen cost of contractility in normal rat hearts.

نویسندگان

  • Susumu Sakata
  • Djamel Lebeche
  • Naoya Sakata
  • Yuri Sakata
  • Elie R Chemaly
  • Li Fan Liang
  • Yoshiaki Takewa
  • Dongtak Jeong
  • Woo Jin Park
  • Yoshiaki Kawase
  • Roger J Hajjar
چکیده

The aim of this study was to examine how global cardiac gene transfer of sarcoplasmic reticulum Ca(2+)-ATPase (SERCA2a) can influence left ventricular (LV) mechanical and energetic function, especially in terms of O(2) cost of LV contractility, in normal rats. Normal rats were randomized to receive an adenovirus carrying the SERCA2a (SERCA) or beta-galactosidase (beta-Gal) gene or saline by a catheter-based technique. LV mechanical and energetic function was measured in cross-circulated heart preparations 2-3 days after the infection. The end-systolic pressure-volume relation was shifted upward, end-systolic pressure at 0.1 ml of intraballoon water volume was higher, and equivalent maximal elastance, i.e., enhanced LV contractility, was higher in the SERCA group than in the normal, beta-Gal, and saline groups. Moreover, the LV relaxation rate was faster in the SERCA group. There was no significant difference in myocardial O(2) consumption per beat-systolic pressure-volume area relation among the groups. Finally, O(2) cost of LV contractility was decreased to subnormal levels in the SERCA group but remained unchanged in the beta-Gal and saline groups. This lowered O(2) cost of LV contractility in SERCA hearts indicates energy saving in Ca(2+) handling during excitation-contraction coupling. Thus overexpression of SERCA2a transformed the normal energy utilization to a more efficient state in Ca(2+) handling and superinduced the supranormal contraction/relaxation due to enhanced Ca(2+) handling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MCI-154, a Ca21 sensitizer, decreases the oxygen cost of contractility in isolated canine hearts

Onishi, Katsuya, Kiyotsugu Sekioka, Ryoichi Ishisu, Yuji Abe, Hideyuki Tanaka, Mashio Nakamura, Yuji Ueda, and Takeshi Nakano. MCI-154, a Ca21 sensitizer, decreases the oxygen cost of contractility in isolated canine hearts. Am. J. Physiol. 273 (Heart Circ. Physiol. 42): H1688– H1695, 1997.—An increase in the responsiveness of the contractile machinery to Ca21 could theoretically enhance the me...

متن کامل

Negative inotropism of hyperthermia increases oxygen cost of contractility in canine hearts.

Heart temperature affects left ventricular (LV) function and myocardial metabolism. However, how and whether increasing heart temperature affects LV mechanoenergetics remain unclear. We designed the present study to investigate effects of increased temperature by 5 degrees C from 36 degrees C on LV contractility and energetics. We analyzed the LV contractility index (E(max)) and the relation be...

متن کامل

The Role of Nitric Oxide and Prostaglandins in the Effect of Adenosine on Contractility, Heart Rate and Coronary Blood Flow in Guinea Pig Isolated Heart

It is a well-established fact that adenosine and its receptor subtypes (A 1 and A ) are involved in changes of contractility, heart rate and coronary blood flow (CBF) under different circumstances. This study was conducted to evaluate the role of nitric oxide and prostaglandins in development of these changes. For this purpose, Nitro-L-Arginine methyl ester (L-NAME), and indomethacin as inhibit...

متن کامل

Sprint training improves contractility in postinfarction rat myocytes: role of Na+/Ca2+ exchange.

Previous studies in adult myocytes isolated from rat hearts 3-9 wk after myocardial infarction (MI) demonstrated abnormal contractility and decreased Na(+)/Ca(2+) exchanger (NCX1) activity. In addition, a program of high-intensity sprint training (HIST) instituted shortly after MI restored both contractility and NCX1 activity toward normal. The present study examined the hypotheses that reduced...

متن کامل

Increased oxygen cost of contractility in stunned myocardium of dog.

Recent studies have shown that myocardial oxygen consumption does not proportionally decrease with the deterioration of contractile function in stunned myocardium. To investigate this disproportion, we studied the end-systolic pressure-volume relation and the relation between oxygen consumption per beat (VO2) and systolic pressure-volume area (PVA, a measure of total mechanical energy) in stunn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 292 5  شماره 

صفحات  -

تاریخ انتشار 2007