Negaperiodic Golay pairs and Hadamard matrices

نویسنده

  • Nickolay A. Balonin
چکیده

Apart from the ordinary and the periodic Golay pairs, we define also the negaperiodic Golay pairs. (They occurred first, under a different name, in a paper of Ito.) If a Hadamard matrix is also a Toeplitz matrix, we show that it must be either cyclic or negacyclic. We investigate the construction of Hadamard (and weighing matrices) from two negacyclic blocks (2N-type). The Hadamard matrices of 2N-type are equivalent to negaperiodic Golay pairs. We show that the Turyn multiplication of Golay pairs extends to a more general multiplication: one can multiply Golay pairs of length g and negaperiodic Golay pairs of length v to obtain negaperiodic Golay pairs of length gv. We show that the Ito’s conjecture about Hadamard matrices is equivalent to the conjecture that negaperiodic Golay pairs exist for all even lengths.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modular Sequences and Modular Hadamard Matrices

For every n divisible by 4, we construct a square matrix H of size n, with coeecients 1, such that H H t nI mod 32. This solves the 32-modular version of the classical Hadamard conjecture. We also determine the set of lengths of 16-modular Golay sequences. 0. Introduction Hadamard matrices can be constructed from various binary sequences, either from Golay complementary sequences, or Williamson...

متن کامل

Complex Golay sequences: structure and applications

Complex Golay sequences were introduced in 1992 to generalize constructions for Hadamard matrices using Golay sequences. (In the last section of this paper we describe some independent earlier work on quadriphase pairs–equivalent objects used in the setting of signal processing.) Since then we have constructed some new in7nite classes of these sequences and learned some facts about their struct...

متن کامل

Golay Sequences for DS CDMA Applications

Golay complementary sequences, often referred to as Golay pairs, are characterised by the property that the sum of their aperiodic autocorrelation functions equals to zero, except for the zero shift. Because of this property, Golay complementary sequences can be utilised to construct Hadamard matrices defining sets of orthogonal spreading sequences for DS CDMA systems of the lengths not necessa...

متن کامل

On A Use Of Golay Sequences For Asynchronous DS CDMA Applications

Golay complementary sequences, often referred to as Golay pairs, are characterised by the property that the sum of their aperiodic autocorrelation functions equals to zero, except for the zero shift. Because of this property, Golay complementary sequences can be utilised to construct Hadamard matrices defining sets of orthogonal spreading sequences for DS CDMA systems of the lengths not necessa...

متن کامل

Dihedral Golay sequences

Dihedral Golay sequences are introduced and found for lengths 7,9,15, and 19. Applications include new classes of signed group Hadamard matrices and 19 real Hadamard matrices of orders 2p, p S 4169.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015