High - speed ( 104 ° C / s ) scanning microcalorimetry with monolayer sensitivity ( J / m 2 )

نویسندگان

  • S. L. Lai
  • G. Ramanath
  • L. H. Allen
  • P. Infante
چکیده

We introduce a high sensitivity (1J/m) scanning microcalorimeter that can be used at high heating rates (10 °C/s). The system is designed using ultrathin SiN membranes that serve as a low thermal mass mechanical support structure for the calorimeter. Calorimetry measurements of the system are accomplished via resistive heating techniques applied to a thin film Ni heating element that also serves as a thermometer. A current pulse through the Ni heater generates heat in the sample via Joule heating. The voltage and current characteristics of the heater were measured to obtain real-time values of the temperature and the heat delivered to the system. This technique shows potential for measuring irreversible heat of reactions for processes at interfaces and surfaces. The method is demonstrated by measuring the heat of fusion for various amounts of thermally evaporated Sn ranging from 50 to 1000 Å. © 1995 American Institute of Physics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microcalorimetry on Metastable Beta Phase Alloys Subjected to Applied Stress

The development of a High Sensitivity Scanning Stress Microcalorimeter for the study of martensitic phase transformations in beta phase CuAlNi single crystal tensile specimens is described. The design of this system is discussed with reference to an earlier version. The values of calorimetric sensitivity reported for the new system represent a significant improvement over the prototype and a co...

متن کامل

Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity.

We have developed a novel phase-resolved optical coherence tomography (OCT) and optical Doppler tomography (ODT) system that uses phase information derived from a Hilbert transformation to image blood flow in human skin with fast scanning speed and high velocity sensitivity. Using the phase change between sequential scans to construct flow-velocity imaging, this technique decouples spatial reso...

متن کامل

The Ability of Ultrasonic Characterization to Extract the Dose Distribution of MAGIC-f Polymer Gel

Background & Aims: Today, different imaging techniques have been studied in the reading of radiationsensitive polymer gels dosage. Due to limitations of imaging techniques such as magnetic resonance imaging (MRI) and computed tomography (CT), ultrasound techniques are proposed for dose-dependent parameter extraction. In this study, using MAGIC-f (methacrylic and ascorbic acid in gelatin initiat...

متن کامل

Thermodynamic of Interaction between Some Water-Soluble Porphyrins and DNA by Titration Microcalorimetry

In the present work, the interaction of three water soluble porphyrins, tetra (p-trimethyle) ammoniumphenyl porphyrin iodide (TAPP) as a cationic porphyrin, tetra sodium meso-tetrakis (p-sulphonatophenyle) porphyrin (TSPP) as an anionic porphyrin and manganese tetrakis (p-sulphonato phenyl)porphinato acetate (MnTSPP) as a metal porphyrin, with DNA have been studied by isothermaltitration microc...

متن کامل

Microcalorimetry: a response to challenges in modern biotechnology

Almost any process in life is accompanied by heat changes which can be monitored by isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC). Both techniques are now established tools in fundamental research but over the last decade a clear tendency towards more problem-driven applications is noted. This review aims at summarizing these problem-oriented applications of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996