Influence of cutting parameters on the depth of subsurface deformed layer in nano-cutting process of single crystal copper
نویسندگان
چکیده
Large-scale molecular dynamics simulation is performed to study the nano-cutting process of single crystal copper realized by single-point diamond cutting tool in this paper. The centro-symmetry parameter is adopted to characterize the subsurface deformed layers and the distribution and evolution of the subsurface defect structures. Three-dimensional visualization and measurement technology are used to measure the depth of the subsurface deformed layers. The influence of cutting speed, cutting depth, cutting direction, and crystallographic orientation on the depth of subsurface deformed layers is systematically investigated. The results show that a lot of defect structures are formed in the subsurface of workpiece during nano-cutting process, for instance, stair-rod dislocations, stacking fault tetrahedron, atomic clusters, vacancy defects, point defects. In the process of nano-cutting, the depth of subsurface deformed layers increases with the cutting distance at the beginning, then decreases at stable cutting process, and basically remains unchanged when the cutting distance reaches up to 24 nm. The depth of subsurface deformed layers decreases with the increase in cutting speed between 50 and 300 m/s. The depth of subsurface deformed layer increases with cutting depth, proportionally, and basically remains unchanged when the cutting depth reaches over 6 nm.
منابع مشابه
Crystal Orientation Effect on the Subsurface Deformation of Monocrystalline Germanium in Nanometric Cutting
Molecular dynamics simulations of nanometric cutting on monocrystalline germanium are conducted to investigate the subsurface deformation during and after nanometric cutting. The continuous random network model of amorphous germanium is established by molecular dynamics simulation, and its characteristic parameters are extracted to compare with those of the machined deformed layer. The coordina...
متن کاملExperimental Study of the Effect of Laser-Cutting Process Parameters on Heat Distribution and Cutting Edge Quality of Steel Sheets
This study aimed to evaluate Laser-cutting process of Mild Steel St37 sheets with two different thicknesses. In order to evaluate the quality of cutting edge and the depth of the area affected by the heat, several tests were conducted to determine the effect of parameters such as Laser power, Laser beam movement speed and pressure of axillary gas on the quality of cutting edge and the depth of ...
متن کاملInvestigation of Cutting Forces Superalloy Inconel 718
Since the cutting tools used in machining process of super alloys are subjected to high cutting forces, accordingly tools life is reduced, therefore improvement in alloys machining and reducing cutting forces to achieve longer tools life is an essential necessity. In this research, the effect of changes in feed rate on cutting forces in machining process of nickel based super alloys is investig...
متن کاملCutting Force Prediction in End Milling Process of AISI 304 Steel Using Solid Carbide Tools
In the present study, an attempt has been made to experimentally investigate the effects of cutting parameters on cutting force in end milling of AISI 304 steel with solid carbide tools. Experiments were conducted based on four factors and five level central composite rotatable design. Mathematical model has been developed to predict the cutting forces in terms of cutting parameters such as he...
متن کاملInfluence of Water Cooling on Orthogonal Cutting Process of Ti-6Al-4V Using Smooth-Particle Hydrodynamics Method
Temperature control during the cutting process with different parameters such as cutting velocity and applying water cooling is essential to decrease the cutting force, increase the life of the cutting tool and decrease the machined surface temperature of work-piece. In this research, the temperature of machined surface and the chip-tool interface in orthogonal cutting process of Ti-6Al-4V were...
متن کامل