Strong Compactness of Approximate Solutions to Degenerate Elliptic-hyperbolic Equations with Discontinuous Flux Function
نویسندگان
چکیده
Under a non-degeneracy condition on the nonlinearities we show that sequences of approximate entropy solutions of mixed elliptic-hyperbolic equations are strongly precompact in the general case of a Caratheodory flux vector. The proofs are based on deriving localization principles for H-measures associated to sequences of measure-valued functions. This main result implies existence of solutions to degenerate parabolic convection-diffusion equations with discontinuous flux. Moreover, it provides a framework in which one can prove convergence of various types of approximate solutions, such as those generated by the vanishing viscosity method and numerical schemes.
منابع مشابه
Analytic solutions for the Stephen's inverse problem with local boundary conditions including Elliptic and hyperbolic equations
In this paper, two inverse problems of Stephen kind with local (Dirichlet) boundary conditions are investigated. In the first problem only a part of boundary is unknown and in the second problem, the whole of boundary is unknown. For the both of problems, at first, analytic expressions for unknown boundary are presented, then by using these analytic expressions for unknown boundaries and bounda...
متن کاملHyperbolic Conservation Laws with Discontinuous Fluxes and Hydrodynamic Limit for Particle Systems
We study the following class of scalar hyperbolic conservation laws with discontinuous fluxes: ∂tρ + ∂xF (x, ρ) = 0. (0.1) The main feature of such a conservation law is the discontinuity of the flux function in the space variable x. Kruzkov’s approach for the L1-contraction does not apply since it requires the Lipschitz continuity of the flux function; and entropy solutions even for the Rieman...
متن کاملDiscontinuous Solutions of Linear, Degenerate Elliptic Equations
We give examples of discontinuous solutions of linear, degenerate elliptic equations with divergence structure. These solve positively conjectures of De Giorgi.
متن کاملSuperconvergence of discontinuous Galerkin methods for 1-D linear hyperbolic equations with degenerate variable coefficients
In this paper, we study the superconvergence behavior of discontinuous Galerkin methods using upwind numerical fluxes for one-dimensional linear hyperbolic equations with degenerate variable coefficients. The study establishes superconvergence results for the flux function approximation as well as for the DG solution itself. To be more precise, we first prove that the DG flux function is superc...
متن کاملDiscontinuous Solutions to Nonlinear Evolutionary Partial Differential Equations
We analyze some recent developments in studying discontinuous solutions to nonlinear evolutionary partial differential equations. The central problems include the existence, compactness, and large-time behavior of discontinuous solutions. The nonlinear equations we discuss include nonlinear hyperbolic systems of conservation laws (especially the compressible Euler equations) and the compressibl...
متن کامل