The Ingenious Structure of Central Rotor Apparatus in VoV1; Key for Both Complex Disassembly and Energy Coupling between V1 and Vo
نویسندگان
چکیده
Vacuolar type rotary H+-ATPases (VoV1) couple ATP synthesis/hydrolysis by V1 with proton translocation by Vo via rotation of a central rotor apparatus composed of the V1-DF rotor shaft, a socket-like Vo-C (eukaryotic Vo-d) and the hydrophobic rotor ring. Reconstitution experiments using subcomplexes revealed a weak binding affinity of V1-DF to Vo-C despite the fact that torque needs to be transmitted between V1-DF and Vo-C for the tight energy coupling between V1 and Vo. Mutation of a short helix at the tip of V1-DF caused intramolecular uncoupling of VoV1, suggesting that proper fitting of the short helix of V1-D into the socket of Vo-C is required for tight energy coupling between V1 and Vo. To account for the apparently contradictory properties of the interaction between V1-DF and Vo-C (weak binding affinity but strict requirement for torque transmission), we propose a model in which the relationship between V1-DF and Vo-C corresponds to that between a slotted screwdriver and a head of slotted screw. This model is consistent with our previous result in which the central rotor apparatus is not the major factor for the association of V1 with Vo (Kishikawa and Yokoyama, J Biol Chem. 2012 24597-24603).
منابع مشابه
Flexibility within the Rotor and Stators of the Vacuolar H+-ATPase
The V-ATPase is a membrane-bound protein complex which pumps protons across the membrane to generate a large proton motive force through the coupling of an ATP-driven 3-stroke rotary motor (V1) to a multistroke proton pump (Vo). This is done with near 100% efficiency, which is achieved in part by flexibility within the central rotor axle and stator connections, allowing the system to flex to mi...
متن کاملDynamics of cytochrome bf complex of photosynthesis apparatus
Photosynthesis is a process under which, the radiative energy is converted into the chemical one. Compared to the man-made devices, the photosynthesis apparatus is much more efficient. This high efficiency comes from its elaborate structure, very fast transition rates and a complex electron and proton transfer chain among the subunits of the apparatus. Its main subunits (Photosystem I (PSI), bf...
متن کاملDynamic Analysis of A Three-Rotor Flexible Coupling with Angular Misalignment
In this paper, the dynamic response of a three-rotor flexible coupling to the angularmisalignment has been studied. The coupling is a power transmission agent between the motor andgearbox, in the power transmission system of SAG Mill (semi autogenously mill) in the Gol-e-Gohariron ore complex in Sirjan, Iran. Degrees of freedom of the system are the model's lateral deflectionsand the rigid-body...
متن کاملRegulatory assembly of the vacuolar proton pump VOV1-ATPase in yeast cells by FLIM-FRET
We investigate the reversible disassembly of VOV1-ATPase in life yeast cells by time resolved confocal FRET imaging. VOV1-ATPase in the vacuolar membrane pumps protons from the cytosol into the vacuole. VOV1ATPase is a rotary biological nanomotor driven by ATP hydrolysis. The emerging proton gradient is used for transport processes as well as for pH and Ca homoeostasis in the cell. Activity of ...
متن کاملSynchronization analysis of complex dynamical networks with hybrid coupling with application to Chua’s circuit
Complex dynamic networks have been considered by researchers for their applications in modeling and analyzing many engineering issues. These networks are composed of interconnected nodes and exhibit complex behaviors that are resulted from interactions between these nodes. Synchronization, which is the concept of coordinated behavior between nodes, is the most interested behavior in these netwo...
متن کامل