Algebraic Quantum Permutation Groups

نویسنده

  • JULIEN BICHON
چکیده

We discuss some algebraic aspects of quantum permutation groups, working over arbitrary fields. If K is any characteristic zero field, we show that there exists a universal cosemisimple Hopf algebra coacting on the diagonal algebra K: this is a refinement of Wang’s universality theorem for the (compact) quantum permutation group. We also prove a structural result for Hopf algebras having a non-ergodic coaction on the diagonal algebra K, on which we determine the possible group gradings when K is algebraically closed and has characteristic zero.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

About Absolute Galois Group

Absolute Galois Group defined as Galois group of algebraic numbers regarded as extension of rationals is very difficult concept to define. The goal of classical Langlands program is to understand the Galois group of algebraic numbers as algebraic extension of rationals Absolute Galois Group (AGG) through its representations. Invertible adeles -ideles define Gl1 which can be shown to be isomorph...

متن کامل

A ] 3 S ep 2 00 7 QUANTUM GROUPS ACTING ON 4 POINTS

We classify the compact quantum groups acting on 4 points. These are the quantum subgroups of the quantum permutation group Q4. Our main tool is a new presentation for the algebra C(Q4), corresponding to an isomorphism of type Q4 ≃ SO−1(3). The quantum subgroups of Q4 are subject to a McKay type correspondence, that we describe at the level of algebraic invariants.

متن کامل

5 M ar 2 00 7 QUANTUM GROUPS ACTING ON 4 POINTS

We classify the compact quantum groups acting on 4 points. These are the quantum subgroups of the quantum permutation group Q4. Our main tool is a new presentation for the algebra C(Q4), corresponding to an isomorphism of type Q4 ≃ SO−1(3). The quantum subgroups of Q4 are subject to a McKay type correspondence, that we describe at the level of algebraic invariants.

متن کامل

The remoteness of the permutation code of the group $U_{6n}$

Recently, a new parameter of a code, referred to as the remoteness, has been introduced.This parameter can be viewed as a dual to the covering radius. It is exactly determined for the cyclic and dihedral groups. In this paper, we consider the group $U_{6n}$ as a subgroup of $S_{2n+3}$ and obtain its remoteness.  We show that the remoteness of the permutation code $U_{6n}$ is $2n+2$.  Moreover, ...

متن کامل

ON THE SPECTRUM OF DERANGEMENT GRAPHS OF ORDER A PRODUCT OF THREE PRIMES

A permutation with no fixed points is called a derangement.The subset $mathcal{D}$ of a permutation group is derangement if all elements of $mathcal{D}$ are derangement.Let $G$ be a permutation group, a derangementgraph is one with vertex set $G$ and derangement set $mathcal{D}$ as connecting set. In this paper, we determine the spectrum of derangement graphs of order a product of three primes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008