Data-driven fMRI data analysis based on parcellation
نویسنده
چکیده
Functional Magnetic Resonance Imaging (fMRI) is one of the most popular neuroimaging methods for investigating the activity of the human brain during cognitive tasks. As with many other neuroimaging tools, the group analysis of fMRI data often requires a transformation of the individual datasets to a common stereotaxic space, where the different brains have a similar global shape and size. However, the local inaccuracy of this procedure gives rise to a series of issues including a lack of true anatomical correspondence and a loss of subject specific activations. Inter-subject parcellation of fMRI data has been proposed as a means to alleviate these problems. Within this frame, the inter-subject correspondence is achieved by isolating homologous functional parcels across individuals, rather than by matching voxels coordinates within a stereotaxic space. However, the large majority of parcellation methods still suffer from a number of shortcomings owing to their dependence on a general linear model. Indeed, for all its appeal, a GLM-based parcellation approach introduces its own biases in the form of a priori knowledge about such matters as the shape of the Hemodynamic Response Function (HRF) and taskrelated signal changes.
منابع مشابه
Ji, Yongnan and Hervé, Pierre-Yves and Aickelin, Uwe and Pitiot, Alain (2009) Parcellation of fMRI datasets with ICA and PLS: a data driven approach. In: Medical Image Computing and Computer-Assisted Intervention - MICCAI
Inter-subject parcellation of functional Magnetic Resonance Imaging (fMRI) data based on a standard General Linear Model (GLM) and spectral clustering was recently proposed as a means to alleviate the issues associated with spatial normalization in fMRI. However, for all its appeal, a GLM-based parcellation approach introduces its own biases, in the form of a priori knowledge about the shape of...
متن کاملParcellation of fMRI Datasets with ICA and PLS-A Data Driven Approach
Inter-subject parcellation of functional Magnetic Resonance Imaging (fMRI) data based on a standard General Linear Model (GLM) and spectral clustering was recently proposed as a means to alleviate the issues associated with spatial normalization in fMRI. However, for all its appeal, a GLM-based parcellation approach introduces its own biases, in the form of a priori knowledge about the shape of...
متن کاملMultimodal Cortical Parcellation Based on Anatomical and Functional Brain Connectivity
Reliable cortical parcellation is a crucial step in human brain network analysis since incorrect definition of nodes may invalidate the inferences drawn from the network. Cortical parcellation is typically cast as an unsupervised clustering problem on functional magnetic resonance imaging (fMRI) data, which is particularly challenging given the pronounced noise in fMRI acquisitions. This challe...
متن کاملAgreement between functional connectivity and cortical thickness-driven correlation maps of the medial frontal cortex
Parcellation of the human cortex has important implications in neuroscience. Parcellation is often a crucial requirement before meaningful regional analysis can occur. The human cortex can be parcellated into distinct regions based on structural features, such as gyri and sulci. Brain network patterns in a given region with respect to its neighbors, known as connectional fingerprints, can be us...
متن کاملIntrinsic functional connectivity pattern based brain parcellation using normalized cut
In imaging data based brain network analysis, a necessary precursor for constructing meaningful brain networks is to identify functionally homogeneous regions of interest (ROIs) for defining network nodes. For parcellating the brain based on resting state fMRI data, normalized cut is one widely used clustering algorithm which groups voxels according to the similarity of functional signals. Due ...
متن کامل