Phenolic excipients of insulin formulations induce cell death, pro-inflammatory signaling and MCP-1 release
نویسندگان
چکیده
Skin reactions at the infusion site are a common side effect of continuous subcutaneous insulin infusion therapy. We hypothesized that local skin complications are caused by components of commercial insulin formulations that contain phenol or m-cresol as excipients. The toxic potential of insulin solutions and the mechanisms leading to skin reactions were explored in cultured cells. The toxicity of insulin formulations (Apidra, Humalog, NovoRapid, Insuman), excipient-free insulin, phenol and m-cresol was investigated in L929 cells, human adipocytes and monocytic THP-1 cells. The cells were incubated with the test compounds dose- and time-dependently. Cell viability, kinase signaling pathways, monocyte activation and the release of pro-inflammatory cytokines were analyzed. Insulin formulations were cytotoxic in all cell-types and the pure excipients phenol and m-cresol were toxic to the same extent. P38 and JNK signaling pathways were activated by phenolic compounds, whereas AKT phosphorylation was attenuated. THP-1 cells incubated with sub-toxic levels of the test compounds showed increased expression of the activation markers CD54, CD11b and CD14 and secreted the chemokine MCP-1 indicating a pro-inflammatory response. Insulin solutions displayed cytotoxic and pro-inflammatory potential caused by phenol or m-cresol. We speculate that during insulin pump therapy phenol and m-cresol might induce cell death and inflammatory reactions at the infusion site in vivo. Inflammation is perpetuated by release of MCP-1 by activated monocytic cells leading to enhanced recruitment of inflammatory cells. To minimize acute skin complications caused by phenol/m-cresol accumulation, a frequent change of infusion sets and rotation of the infusion site is recommended.
منابع مشابه
P 96: Role of Thrombin in Inflammatory Central Nervous System (CNS) Diseases
Thrombin is a multifunctional enzyme which has key roles in coagulation cascade and inflammatory events. The pro-inflammatory functions of thrombin occur by different mechanisms including increasing mast cell degranulation, up-regulating the expression of cell adhesion molecules (CAMs) and promoting the secretion of inflammatory chemokines and cytokines. Dysregulated signaling functions of thro...
متن کاملاستفاده از مهار کننده فاکتور نسخهبرداری NF - κB در جزایر پانکراس
Background: Pancreatic islet transplantation has been reported as an appropriate method for treatment of type I diabetes patients, however there are strong indications that cytokine and chemokines secreted from transplanted islets play an important role in islet graft rejection in different stage post-transplantation. The NF-kB signaling pathway is activated in response to the stress resulted f...
متن کاملThe Effect of Formulation Variables on the Release Kinetics of Paracetamol Tablet Formulations.
Aim: The objective of this work was to study the effects of formulation variables on the release kinetics of paracetamol tablet formulation. Materials and Methods: Paracetamol tablets were formulated using wet granulation (WG) and direct compression (DC) using two predetermined pressures. Avicel, dicalcium phosphate (DCP) and pregelatinized starch (PGS) were used as directly compressible...
متن کاملChondroitin Sulfate Inhibits Monocyte Chemoattractant Protein-1 Release From 3T3-L1 Adipocytes: A New Treatment Opportunity for Obesity-Related Inflammation?
Monocyte chemoattractant protein-1 (MCP-1) overproduction from inflamed adipose tissue is a major contributor to obesity-related metabolic syndromes. 3T3-L1 embryonic fibroblasts were cultured and differentiated into adipocytes using an established protocol. Adipocytes were treated with lipopolysaccharide (LPS) to induce inflammation and thus MCP-1 release. At the same time, varying concentrati...
متن کاملAnti-inflammatory Effect of Shikonin on Cultured Astrocytes Derived from Rat Brain
Introduction: Astrocytes have an important role in many neurodegenerative diseases. Active astrocytes release inflammatory factors such as NO and ILs. Shikonin, a naphthoquinone pigment of Lithospermum erythrorhizon roots has anti-inflammatory and antitumoral effects. The present study aims to investigate the anti-inflammatory and toxic effects of Shikonin on cultured astrocytes. Methods...
متن کامل